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Abstract: This work presents a proposal to relate the melt flow index with rheological parameters such 

as apparent viscosity, taking into account its dependence on the shear rate. The results obtained for 

polypropylene, which is pseudoplastic, proved that the proposed model is adequate, accurately fitting 

the experimental data. 
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I. INTRODUCTION  

When Oakes created the melt flow index (MFI), he was only interested in developing a parameter or an 

index that would provide information regarding the processability and quality of the polyethylene produced by 

ICI [1]. Currently, MFI is standardized by as ASTM and DIN and is a widely used method with the initial 

objective, but for all thermoplastic polymers. 

Because it is a simple measure, the MFI is often used as the only parameter for determining the processing 

conditions of a thermoplastic polymer, given that the necessary rheological functions depend on expensive 

equipment. Some works have been published relating MFI indirectly with properties such as molar mass [1] and 

extrusion variables [2], and directly with volume flow [1,3] 

The relationship between MFI and volumetric flow rate is direct, since MFI, given in g/10min, is a 

measure of mass flow rate, and it is easy to convert it into volumetric flow rate, Q, in cm3/s, as follows: 

𝑀𝐹𝐼 =  𝛼𝜌𝑄      (1) 

where 𝛼 is the conversion factor from cm3/s to g/10min, and 𝜌 is the density given in g/cm3. 

Methods that attempt to relate MFI to the most important rheological variables fail to consider the 

polymer viscosity, 𝜂, as being Newtonian. This is seen in Brener's proposition [1], who, using the Hagen-

Poiseuille equation for Newtonian fluids in capillaries, proposed if: 

𝑄 =  
𝜋∆𝑃𝑅4

8𝜇𝑙
     (2) 

where 𝜇 is Newtonian viscosity, in Pa.s, 
∆𝑃

𝑙
 is the pressure gradient, in Pa/m, R is capillary radius, in m. 

Combining Eq.(1) and Eq. (2) results in 

𝑀𝐹𝐼 =  (
𝜋𝛼∆𝑃𝑅4

8𝑙
) 𝜇−1     (3) 

Eq. (3) is named Brener’s model. However, few polymers, even in dilute solution, have viscosity in the 

melt state independent of the shear rate, �̇�. Even under very low shear rates, as is the case verified inside the MFI 

equipment (MFIe), most thermoplastic polymers have their viscosity profoundly altered due to pseudoplasticity, 

been convenient to use the term apparent viscosity, 𝜂𝑎, which depends on the shear rate. For this reason, the 

volumetric flow rate of pseudoplastic fluids in capillaries (see Figure 1) is much higher than that predicted by the 

Hagen-Poiseuille equation (Eq. (2)).Thus, the MFI experimental data present values significantly different from 

those produced by Eq. (3), especially if the power-law index, n, present in Eq. (4) stray far from the unit value for 

totality of melt polymers. 

Almost all polymers don’t obey Newton's Law for the viscosity, 𝜏 = 𝜇�̇�, and follow the Ostwald Power-

Law seen in Eq. (4). 

𝜏 = 𝐾�̇�𝑛      (4) 
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where 𝐾 = 𝜂𝑎�̇�1−𝑛 is the consistency index, usually given in Pa.sn and 𝜂𝑎 = 𝜏 �̇�⁄  is the apparent viscosity in Pa.s, 

𝜏 is the shear stress in Pa and �̇� is shear rate in s-1. 

The solution for the volumetric flow of power-law fluids in capillaries, according to [livros navarro], is 

shown in Eq. (5). 

𝑄 =
𝑛

3𝑛+1
𝜋𝑅3 (

𝑅Δ𝑃

2𝐾𝑙
)

1/𝑛

     (5) 

Comparing Eqs. (1) and (5), we obtain the relationship between MFI and Q for power-law fluids given by: 

𝑀𝐹𝐼 =  𝛼𝜌
𝑛

3𝑛+1
𝜋𝑅3 (

𝑅Δ𝑃

2𝐾𝑙
)

1/𝑛

    (6) 

or 

𝑀𝐹𝐼 =  𝛼𝜌
𝑛

3𝑛+1
𝜋𝑅3 (

𝑅Δ𝑃

2𝜂𝑎�̇�1−𝑛𝑙
)

1/𝑛

   (7) 

Eq. (7) may be used for any shear rate. 

Although the power-law flashes in regions at and the �̇� → 0 and �̇� → ∞, therefore it does not provide 

precise results for the apparent viscosity in both region, 𝜂0 and 𝜂∞ respectively, it is possible to derive an analytical 

expression for the 𝜂(�̇�) = 𝜂𝑎 dependence that satisfy the conditions of finite values for 𝜂(�̇�) when �̇� → 0 and �̇� →
∞, assuming that in the intermediate range for 𝜂(�̇�), that is 0 ≪ �̇� ≪ ∞, it follows Eq. (4). According to 

Vinogradov & Malkin [4], 

𝜂(�̇�) = 𝜂∞ +
𝜂0−𝜂∞

1+𝐾�̇�𝑛                              (8) 

As, for most polymer, 𝜂∞ <<  𝜂0, Eq. (8) reduces to 

𝜂(�̇�) =
𝜂0

1+𝐾�̇�𝑛       (9) 

Substituting Eq. (9) in Eq. (7), we get 

𝑀𝐹𝐼 =  𝛼𝜌 [
𝑛

3𝑛+1
𝜋𝑅3 (

𝑅Δ𝑃(1+𝐾�̇�𝑛)

2𝜂𝑎�̇�1−𝑛𝑙𝜂0
)

1/𝑛

]    (10) 

which relates MFI to 𝜂𝑎 and provides satisfactory results as long as the temperature, shear stress and shear rate 

applied to both the capillary rheometer and the MFIe are the same. For rheometers with other geometry, in 

Appendix I, there are other solutions relating MFI and Q not used in this work. 

According to [3], the average values of such and point range in the MFIe are given by: 

�̇�𝑀𝐹𝐼 =
𝑀𝐹𝐼

𝛼𝜌𝑅𝑀
3                                                      (11) 

𝜏𝑀𝐹𝐼 =
𝑅𝑀

8𝑅𝐶
2𝑙𝑀

𝐹                                                 (12) 

the values provided by Eqs. (11) and (12) must be adjusted for use in the capillary rheometer. 

 

II. EXPERIMENTAL PROCEDURE  

The polymer used was polypropylene supplied by Polibrasil (Camaçari, Bahia, Brazil) as it came from 

the manufacturer, with a density of 0.758 g/cm3 and a melt flow index of 3.39 g/10min, measured at 190°C. Melt 

flow index measurements were made on a standard MFIe with a cylinder diameter of 9.474 mm, die diameter, 

𝑑𝑀 = 2𝑅𝑀 of 2.0955 mm and die length, 𝑙𝑀 of 8.0 mm and l/d ratio of about 4.0. The distance traveled by the 

piston was 25.0 mm and the applied force, F, was 5.0 Kgf. The operating temperature was 190°C. For other shear 

rates and l/d ratios, a HAAKE SYSTEM 90 rheometer was used, with a single screw extruder, and the temperature 

in all regions of the extruder fixed at 190°C. 

 

III. RESULTS AND DISCUSSIONS  

As show in Table 1, the results obtained with Eqs. (1) and (2) showed great discrepancy with the 

experimental results, due to not taking into account the power-law index, n, of the sample at a temperature of 

190°C. As shown in Figure 1, as 𝑛 → 0, moving away from the unitary value, the values of the volumetric flow 

rate, Q, measured in the same pressure gradient and 1.0 ≪ 𝑙
𝑑⁄ ≪ 10.0, move far away from the value calculated 

for a Newtonian fluid. The model proposed in this work proves to be adequate, producing compatible values 

for 0 ≪  𝑛 ≪  1.0. 
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Figure 1. Influence of n on the Q x pressure drop ratio. 

 

l/d MFI Eq. (3) (g/10min) MFI Eq. (10) (g/10min) MFI EXP(g/10min) 

4.0 0.328 3.580 3.500 

6.0 0.062 0.410 0.420 

8.0 0.020 0.099 0.100 

10.0 0.008 0.032 0.032 

Table 1. Experimental values of the MFI and those obtained by Eqs. (3) and (10). 

 

Table 1 also presents MFI’s data for l/d of 4.0, 6.0, 8.0 and 10.0, for a pressure gradient of 5.9 Pa/cm. 

The difference between the experimental values and those produced by Eq. (3) increases as the shear becomes 

more severe, that is, as the l/d ratio increases. This is because the index n characterizes not only the departure 

from Newtonian behavior but also indicates the degree of sensitivity to shear [5]. As this model does not consider 

the index n, it fails. Eq. (10), on the contrary, includes the power-law index and can be used in any shear range, 

that is, for any l/d ratio. 

 
IV. CONCLUSION  

 Experimental data show that the model proposed in this work fits perfectly experimental data, making it 

suitable to correlate the relationship between MFI and apparent viscosity under constant temperature and pressure 

gradient for any power-law index, 0 < 𝑛 < 1.0, and 𝑙/𝑑 ratio. 
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APPENDIX I 

 The following equations were compiled from Navarro, 2018 [6]. 

1) Slit rheometer, 

𝑄 =  
2𝑤𝐵2

𝑚+2
(

Δ𝑃𝐵

𝐾𝑙
)

𝑚

    (A1) 

Where 𝑚 =
1

𝑛
, 𝑤 is the width of the slit and 𝐵 is the half of slit height. 

So, Eq. (1) becomes 

𝑀𝐹𝐼 =  𝛼𝜌
2𝑤𝐵2

𝑚+2
(

Δ𝑃𝐵

𝐾𝑙
)

𝑚

    (A2) 

2) Annular geometry rheometer with linear movement of the inner cylinder 

𝑄 =
2𝜋𝑅2𝑉

Γ1−𝑚−1
[

(1−Γ3−𝑚)

3−𝑚
−

1−Γ2

2
]   (A3) 

Where 𝑅 is inner radius of outer cylinder and Γ is the ratio between the outer radius of the inner cylinder and R. 

So, 

𝑀𝐹𝐼 = 𝛼𝜌
2𝜋𝑅2𝑉

Γ1−𝑚−1
[

(1−Γ3−𝑚)

3−𝑚
−

1−Γ2

2
]  (A4) 
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3) Circular duct with angle of convergence 𝜑 

𝑄 =
𝜋𝑅0

2

𝑚+3
(

Δ𝑃𝑅0

2𝐾𝑙
)

𝑚

[
3(𝜑−1

𝑚(1−𝜑3)
]

𝑚

   (A5) 

Where 𝑅0 is larger radius or input radius. 

𝑀𝐹𝐼 =  𝛼𝜌
𝜋𝑅0

2

𝑚+3
(

Δ𝑃𝑅0

2𝐾𝑙
)

𝑚

[
3(𝜑−1

𝑚(1−𝜑3)
]

𝑚

  (A6) 

4) Radial flow between two parallel disks 

𝑄 =
4𝜋𝑛

2𝑛+1
[

(1−𝑛)(𝑃1−𝑃2)

𝐾(𝑟2
1−𝑛−𝑟1

1−𝑛)
𝐵2𝑛+1]

1/𝑛

   (A7) 

Where 𝑟1 is the input radius, 𝑟2 is the disk radius, 𝐵 is the half the separation distance between the disks. 

𝑀𝐹𝐼 = 𝛼𝜌
4𝜋𝑛

2𝑛+1
[

(1−𝑛)(𝑃1−𝑃2)

𝐾(𝑟2
1−𝑛−𝑟1

1−𝑛)
𝐵2𝑛+1]

1/𝑛
 (A8) 

 

 


