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I. INTRODUCTION AND PRELIMINARIES 
 Random approximations and random fixed point theorems are stochastic generalizations of classical 

approximations and fixed point theorems. Random fixed point theory was initiated by the Prague school of 

probabilities in the works of Hans [12] and Spacek [2]. Fixed point iterative schemes for nonlinear operators on 

Banach and Hilbert spaces were studied and improved by many authors in recent times. The development of 

random fixed point iterative schemes was initiated by Choudhary in [4] where random Ishikawa iterative 

scheme was defined and its strong convergence to a random fixed point in Hilbert spaces was discussed. After 

that several authors  [1, 9, 13, 14, 15, 19] have worked on random fixed point iterations to obtain fixed points in 

deterministic operator theory. Then Chugh et al.[16] defined and proved the convergence of random SP iterative 

scheme 

The following iterative schemes are now well known: 

Random Mann iterative scheme [3]: 

               
        1

1 , ,
n n n n n

x w x w T w x w


      fo r 0 , ,n w                     (1.1) 

where  0 1
n

    and 
0

:x F   is an arbitrary measurable mapping.  

Random Ishikawa iterative scheme [4]: 

                 1
(1 ) ( ) , ( ) ,

n n n n n
x w x w T w y w


       

                 
        1 , ,

n n n n n
y w x w T w x w      fo r 0 , ,n w                      (1.2) 

where 0 , 1
n n

     and 
0

:x F   is an arbitrary measurable mapping. 

Random SP iterative scheme [16]: 

        

        

          

1
1 , ,

1 , ,

1 , fo r 0 , , 1 .3

n n n n n
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x w y w T w y w

y w z w T w z w

z w x w T w x w n w
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where {
n

 }, {
n

 } and {
n

 } are  sequences of positive  numbers in  [0,1] and 
0

:x F   is an arbitrary 

measurable mapping.  

In 2001, Xu and Ori [7], introduced the following implicit iterative scheme for a finite family of nonexpansive 

mappings {T1, T2, …., TN} from  K to K, where K is a nonempty closed convex subset of a Hilbert space E. Let 

{αn} be a real sequence in (0, 1) and an initial point x1 ∈ C, 

1 1 0 1 1 1

2 2 1 2 2 2

N N N 1 N N N

N 1 N 1 N N 1 1 N 1

x x (1 ) T x ,

x x (1 ) T x ,

.. .

x x (1 ) T x ,

x x (1 ) T x ,

.. .



   

    

    

    

    

                                                                                      (1.4) 

It can also be written as 

n n n 1 n n n
x x (1 ) T x ,


       n ≥ 1, where 

n n (m o d N )
T T (mod N takes the values in the set {1, 2, … , 

N}). They proved the weak convergence of the sequence {xn} defined by (1.4) to a common fixed point 
N

i

i 1

p F F (T )



     

Corresponding to this, I. Beg and B. S. Thakur [8] defined general composite random implicit iterative scheme 

as follows: 

         Let , :   
i i

S T C C , i = 1, 2, …, N  be operators on a nonempty convex subset C of a separable 

Banach space X. Then the sequence  n
x generated by random implicit scheme associated with Si or Ti is 

defined as follows: 

Let 
0

:x C   be any given measurable mapping. 

 

 

 

1 1 0 1 1 1

2 2 1 2 2 2

N N N 1 N N N

x (t) (1 ) x t S (t , x ( t) )

x ( t) (1 ) x t S (t , x ( t) )

.

.

.

x ( t) (1 ) x t S (t , x ( t) )


    

    

    

 

 

 

N 1 N 1 N N 1 1 N 1

2 N 2 N 2 N 1 2 N N 2 N

x (t) (1 ) x t S ( t , x ( t) )

.

.

.

x ( t) (1 ) x t S ( t , x ( t) )

.

.

   



    

    

                                                                         (1.5) 

or 
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1 1 0 1 1 1

2 2 1 2 2 2

N N N 1 N N N

N 1 N 1 N N 1 1 N 1

2 N 2 N 2 N 1 2 N N 2 N

x (t) (1 ) x t T ( t , x ( t ) )

x ( t ) (1 ) x t T ( t , x ( t ) )

.

.

.

x ( t ) (1 ) x t T ( t , x ( t ) )

x ( t ) (1 ) x t T ( t , x ( t ) )

.

.

.

x ( t ) (1 ) x t T ( t , x ( t ) )

.

.



   



    

    

    

    

    

                                                                               (1.6) 

where 
n

{ } [0 ,1]   . 

Definition Let {
1 2 N

T , T , ..., T  } be a family of random asymptotically nonexpansive operators from 

K K   , where K is a closed, convex subset of a separable Banach space E. Let 

N

i

i 1

F R F (T )



   , 

where   
i

R F (T )  is the set of all random fixed points of a random operator Ti for each i ∈ {1, 2,…, N}. Let 

0
: K    be any fixed measurable mapping and 

n
{ } [0 ,1],   then modified implicit random iterative 

scheme associated with Si is defined as follows: 

 

 

 

 

 

 

1 1 0 1 1 1

2 2 1 2 2 2

N N N 1 N N N

2

N 1 N 1 N N 1 1 N 1

2

2 N 2 N 2 N 1 2 N N 2 N

2 N 1 2 N 1 2 N 2 N 1 1

x (t) (1 ) x t S ( t , x ( t) )

x ( t) (1 ) x t S ( t , x ( t) )

.

.

.

x ( t) (1 ) x t S ( t , x ( t) )

x ( t) (1 ) x t S ( t , x ( t) )

.

.

.

x ( t) (1 ) x t S ( t , x ( t) )

x ( t) (1 ) x t S



   



  

    

    

    

    

    

    
3

2 N 1
( t , x ( t) ) , (1 .7 )

.

.



 
Similarly, modified implicit random iterative scheme associated with Ti, is defined as follows: 
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1 1 0 1 1 1

2 2 1 2 2 2

N N N 1 N N N

2

N 1 N 1 N N 1 1 N 1

2

2 N 2 N 2 N 1 2 N N 2 N

2 N 1 2 N 1 2 N 2

x (t) (1 ) x t T (t , x ( t) )

x ( t) (1 ) x t T ( t , x ( t) )

.

.

.

x ( t) (1 ) x t T ( t , x ( t) )

x ( t) (1 ) x t T ( t , x ( t) )

.

.

.

x ( t) (1 ) x t T ( t , x ( t) ) (1 .8 )

x ( t) (1 ) x t



   



 

    

    

    

    

    

    
3

N 1 1 2 N 1
T (t , x ( t) ) ,

.

.

 

 
  

In this paper, we prove the convergence of two random implicit iterative schemes to a random common fixed 

point . Our result is generalization of the results in [16] and some other known results [10, 20] in the literature of   

fixed point theory.  Firstly we give some definitions. 

Through this paper, ( , )   denotes a measurable space and X denotes a real Banach space. For any function 

T : X X     we denote the n-th iterate T (t, T (t, ... , T (t, x )))  of T by 
n

T (t, x ) .  The letter I  denotes the 

random mapping :I X X   defined by  ,I x x  and 
0

T I .  

Definition 1.1 Let C be a nonempty subset of a separable Banach space X and :T C C   be a random 

operator. Then T is said to be an asymptotically nonexpansive random operator if there exists a sequence of  

measurable functions  : 1,
n

r     with  lim 1
n

n

r t
 

  such that 

         
     , ,

n n

n
T t x T t y r t x y     

for all , ,x y C n N   and for each t   . 

Definition 1.2 A mapping :f C   is called measurable if  
1

f B C


    for every Boral subset B 

of X.  

Definition 1.3 A function :F C C     is called a random operator if  . , :F x C   is measurable for 

every x C . 

Definition 1.4 A measurable mapping :g C   is said to be random fixed point of the random operator

:F C C    , if     ,F w g w g w for all w   . 

Definition 1.5 A random operator :F C C    is said to be continuous if, for fixed w   ,

 , . :F w C C  is continuous.  

Now, we prove our main results. 
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II. MAIN RESULTS 
Theorem 2.1  Let X  be a separable Banach space and C be a nonempty, closed and convex subset of X . Let 

 
, :   

i j
S T C C , i, j ∈ {1, 2,…, N}  be random operators defined on C such that at least one of the 

following conditions hold for all ,x y C  and  t  : 

  

   

       

     

        

( i ) t , t ,

t , t , t , t , ,

0 , 0 , 0 ,1 0 .

i i t , t ,

m a x , t , t , , t , t , ,

0 1 .

 

           
   

     

 

      

 

i j

i j j i

i j

i j j i

S x T y

a x y b x S x y T y c x T y y S x

a b c b c

S x T y

q x y x S x y T y x T y y S x

q

     

        

     

        

i i i t , t ,

m a x , t , , t , , t , , t , ,

, 0 , 0 1 .

iv t , t ,

m a x , t , , t , , t , , t , ,

0 1 .

 

      

     

 

    

 

i j

i j j i

i j

i j j i

S x T y

x y x S x y T y x T y y S x

S x T y

q x y x S x y T y x T y y S x

q

 

 
If the random implicit iterative scheme associated with (1.5) or (1.6), satisfying (i)-(iii) converges, then it 

converges to a common random fixed point of Si and Tj. Further, if (iv) holds, then this common fixed point will 

be unique.  

Proof. Let us  assume that the sequence n
x  defined by (1.5) has a pointwise  limit, that is, 

   lim ,
 


n

n

x t u t  for all  t . As  X  is a separable Banach space, the mapping     t ,x t A f t  is 

measurable mapping [6]  for any random operator :A C X    and any measurable mapping :f C  . 

      Now, the sequence  n
x  constructed by  the random implicit iterative schemes  (1.5) and (1.6) is a 

sequence of measurable mappings as   x t
 
is measurable and C is convex.  Therefore, :x C   is also 

measurable, being limit of a sequence measurable mappings. 

       First of all we assume  that     t , 
i

S x t x t  for   x t C . Then after putting       x t y t u t   

into any of the inequalities    i iv , it is easy to see that     t , .
j

T u t u t  In a similar manner  

   t , ( ) 
j

T u t u t   implies    t , ( ) 
i

S u t u t   

Suppose the sequence  n
x generated by implicit iterative scheme associated with 

i
S  converges to u, that is, 

   lim .
 


n

n

x t u t   Then, from  (1.5), we have 

        1 1 1 1
1 t, x

   
  

n n n n i n
x t x t S t  . Since 

n
n

lim x (t) u (t) ,
 

  so we have 

n 1 n
x ( t) x ( t) 0 .


   Using it, we obtain     1

t , x 0


 
n i n

x t S t . From which, it follows that 

    1
t , x 0


 

i n
u t S t  

If Si, Tj satisfy (i), then 
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t , x t , t , x ( t , )

t , t , x . 2 .1

       
 

    
 

i n j n n i n j

n j i n

S t T u t a x t u t b x t S t u t T u t

c x t T u t u t S t

  

  

If Si,Tj satisfy (ii), then 

     
             

         

 

, t , x t , ,

t , x t , m a x

t, t , x

2 .2

    
 

   
   

 

n n i n j

i n j

n j i n

x t u t x t S t u t T u t

S t T u t q

x t T u t u t S t

                          

Also, if Si,Tj satisfy (iii), then  

     
             

         

 

x , x t, x , t , ,

t , x t , m a x

x t, , t , x

2 .3

    
 

    
  

 

n n n i n j

i n j

n j i n

t u t t S t u t T u t

S t T u t

t T u t u t S t

 

Further, if Ti, Sj satisfy (iv), then clearly they will satisfy (ii).  

On applying the limit ,n    in (2.1), (2.2), (2.3), we get 

           t , t , , 2 .4   
j j

u t T u t u t T u t

         

where  m a x , , 1 .b c q       Then     t , .
j

T u t u t  Similarly, we can show that 

    t , .
i

S u t u t   

To prove the uniqueness of  u t  in the case (iv), let us assume that  v t  be common fixed point of S and T 

other than   ,u t   then using (iv), we have 

         

        

              

   

t , t ,

, t , ,

m a x

t, , t , , t ,

,

  

  
 

  
   

 

 

i j

i

j j i

u t v t S u t T v t

u t v t u t S u t

q

v t T v t u t T v t v t S u t

q u t v t

  

which further yields    (1 ) 0 .  q u t v t   

But  0 1,q   hence     0 u t v t , which is a contradiction as norm is always nonnegative, therefore 

   u t v t   always.  

Theorem 2.2  Let X  be a separable Banach space and C be a nonempty, closed and convex subset of X . Let 
 

, :   
i j

S T C C , i, j ∈ {1, 2,…, N}  be random operators defined on C such that at least one of the 

following conditions hold for all ,x y C  and  t  : 
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( i ) t , t ,

t , t , t , t , ,

0 , 0 , 0 ,1 0 .

i i t , t ,

m a x , t , t , , t , t , ,

0 1 .

 

           
   

     

 

      

 

i j

i j j i

i j

i j j i

S x T y

a x y b x S x y T y c x T y y S x

a b c b c

S x T y

q x y x S x y T y x T y y S x

q

     

        

     

        

i i i t , t ,

m a x , t , , t , , t , , t , ,

, 0 , 0 1 .

iv t , t ,

m a x , t , , t , , t , , t , ,

0 1 .

 

      

     

 

    

 

i j

i j j i

i j

i j j i

S x T y

x y x S x y T y x T y y S x

S x T y

q x y x S x y T y x T y y S x

q

 

 
If the random implicit iterative scheme associated with (1.7) or (1.8) satisfying (i)-(iii) converges, then it 

converges to a common random fixed point of Si and Tj. Further, if (iv) holds, then this common fixed point will 

be unique.  

Proof. Let us  assume that the sequence n
x  defined by (1.7) has a pointwise  limit, that is, 

   lim ,
 


n

n

x t u t  for all  t . As  X  is a separable Banach space, the mapping     t ,x t A f t  is 

measurable mapping [6] for any random operator :A C X    and any measurable mapping :f C  . 

      Now, the sequence  n
x  constructed by  the random implicit iterative scheme  (1.7) and (1.8) is a sequence 

of measurable mappings as   x t
 
is measurable and C is convex.  Therefore, :x C   is also measurable, 

being limit of a sequence measurable mappings. 

First of all we assume  that     t , 
i

S x t x t  for   x t C . Then after putting       x t y t u t   into 

any of the inequalities    i iv , it is easy to see that     t , .
j

T u t u t  In a similar manner  

   t , ( ) 
j

T u t u t   implies    t , ( ) 
i

S u t u t   

Suppose the sequence  n
x generated by implicit iterative scheme associated with 

i
S  converges to u, that is, 

   lim .
 


n

n

x t u t   Then, from  (1.7) we have 

        1 1 1 1
1 t, x

   
  

j

n n n n i n
x t x t S t  . Since 

n
n

lim x (t) u (t) ,
 

  so we have 

n 1 n
x ( t) x ( t) 0 .


   Using it, we obtain     1

t , x 0


 
n i n

x t S t . From which, it follows that 

    1
t , x 0


 

j

i n
u t S t  

If Si, Tj satisfy (i), then 

                  

           

t , x t , t , x ( t , )

t , t , x . 2 .5

       
 

    
 

i n j n n i n j

n j i n

S t T u t a x t u t b x t S t u t T u t

c x t T u t u t S t

  

  

If Si,Tj satisfy (ii), then 
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, t , x t , ,

t , x t , m a x

t, t , x

2 .6

    
 

   
   

 

n n i n j

i n j

n j i n

x t u t x t S t u t T u t

S t T u t q

x t T u t u t S t

                          

Also, if Si,Tj satisfy (iii), then  

     
             

         

 

x , x t, x , t , ,

t , x t , m a x

x t, , t , x

2 .7

    
 

    
  

 

n n n i n j

i n j

n j i n

t u t t S t u t T u t

S t T u t

t T u t u t S t

 
Further, if Ti, Sj satisfy (iv), then clearly they will satisfy (ii).  

On applying the limit ,n    in (2.5), (2.6), (2.7), we get 

           t , t , , 2 .8   
j j

u t T u t u t T u t

         

where  m a x , , 1 .b c q       Then     t , .
j

T u t u t  Similarly, we can show that 

    t , .
i

S u t u t   

To prove the uniqueness of  u t  in the case (iv), let us assume that  v t  be common fixed point of S and T 

other than   ,u t   then using (iv) we have 

         

        

              

   

t , t ,

, t , ,

m a x

t, , t , , t ,

,

  

  
 

  
   

 

 

i j

i

j j i

u t v t S u t T v t

u t v t u t S u t

q

v t T v t u t T v t v t S u t

q u t v t

  

which further yields    (1 ) 0 .  q u t v t   

But  0 1,q   hence     0 u t v t , which is a contradiction as norm is always nonnegative, therefore 

   u t v t   always.  
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