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l. INTRODUCTION AND PRELIMINARIES

Random approximations and random fixed point theorems are stochastic generalizations of classical
approximations and fixed point theorems. Random fixed point theory was initiated by the Prague school of
probabilities in the works of Hans [12] and Spacek [2]. Fixed point iterative schemes for nonlinear operators on
Banach and Hilbert spaces were studied and improved by many authors in recent times. The development of
random fixed point iterative schemes was initiated by Choudhary in [4] where random Ishikawa iterative
scheme was defined and its strong convergence to a random fixed point in Hilbert spaces was discussed. After
that several authors [1, 9, 13, 14, 15, 19] have worked on random fixed point iterations to obtain fixed points in
deterministic operator theory. Then Chugh et al.[16] defined and proved the convergence of random SP iterative
scheme
The following iterative schemes are now well known:

Random Mann iterative scheme [3]:

X (W)=(1-a,)x, (W)+a T (w,x (w)), for n>0, weQ, (1.1)
where 0 <a <1 and x,:Q — F isan arbitrary measurable mapping.
Random Ishikawa iterative scheme [4]:

Xoa(W)=@Q-a )x (W)+a T (w,y (w)),

Yo(w)=(1-B,)x,(w)+B,T(w,x, (w)), for n>0, weQ, (1.2)

where 0 < a ,p <1and x,:Q — F isanarbitrary measurable mapping.
Random SP iterative scheme [16]:

Xy (W)= (1=a )y, (w)+aT(wy, (w)),
Yo (w)=(1-B,)z, (w)+B,T (w.z,(w))

z,(w)=(1-vy,)x, (w)+y T (wx, (w)) for n>0, weQ, (1.3)
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where {a }, {8, }and {7, } are sequences of positive numbers in [0,1] and x, : Q — F isan arbitrary
measurable mapping.

In 2001, Xu and Ori [7], introduced the following implicit iterative scheme for a finite family of nonexpansive
mappings {Ti, T, ...., Tn} from K to K, where K is a nonempty closed convex subset of a Hilbert space E. Let
{an} be areal sequence in (0, 1) and an initial point x; € C,

X, =a, X, +(1-a,)T x,,

X,=0a,X, +(1-a,)T, x,,

(1.4)

Xy=0o Xy  +(Q-a )T, x,,

Xy =y Xy +1-a

N+1)T1 XN+1’

It can also be written as
X,=o X ,+@-o )T x ,¥nxlwhere T =T . (modN takes the values in the set {1,2, ...,
N3}). They proved the weak convergence of the sequence {x,} defined by (1.4) to a common fixed point

peF=]F(T,)

i=1

Corresponding to this, I. Beg and B. S. Thakur [8] defined general composite random implicit iterative scheme
as follows:

Lets, T.:QxC —» C,i=1,2,...,N be operators on a nonempty convex subset C of a separable

Banach space X. Then the sequence { x_} generated by random implicit scheme associated with S; or T; is
defined as follows:

Let x, : Q — C be any given measurable mapping.
X, ()=(1-a,)x, (t)+a,S,(tx, (1)

x,()=01-0a,)x, (t)+a,S,(tx,(1)

X, (O=0-0a )x, ,(t)+a,S, {tx, (1)

XN+1(t): (l_aN+1)XN (t)+ 0‘N+181(t'XN+1(t))

(1.5)

X2N(t):(l_U“ZN)XZNfl(t)-'_O"ZNSN (t,x, (1)

or
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X, ()=1-a,)Xx, (t)+ a, T, (t,x, (1)

X, ()= (@-a,)x, (t)+a,T,(tx,(1)

XN(t):(lfaN)fol(t)+ozNTN(t,XN(t))

Xa(O=Q-a )x, (t)+ oy, T (X, (1) (1.6)

Xon (t):(1_a2N)X2N—1(t)+O{'2NTN (t,x, (1)

where {a }<[0,1] .

Definition Let {T,,T,,..., T, } be a family of random asymptotically nonexpansive operators from
N

Q x K — K , where Kiisa closed, convex subset of a separable Banach space E. Let F = ﬂ RFE(T)=4¢,
i=1

where RF(T,) isthe set of all random fixed points of a random operator T; for each i € {1, 2,..., N}. Let

&, Q — K beany fixed measurable mapping and {o A } < [0,1], then modified implicit random iterative
scheme associated with S; is defined as follows:
X (0 =1-a,)x, (t)+a,S,(tx, (1)

X, (1) =(1-a,)x, (t)+a,S,(tx,(1)

Xy (O =0-o )%, ()+a S, (tx, (1)

XN+1(t):(1_aN—1)XN (t)+aN-1S12 (t'XN+1(t))

X (0= (=0, )%, (1) + 0,8, (tx,, (1)

XZN+1(t):(l_a2Nfl)XZN (t)-'-(x'ZNﬂSl3 (t’X2N+1(t))’ (17)

Similarly, modified implicit random iterative scheme associated with T;, is defined as follows:
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X, (8) = (L= o)) %, (t)+a,T,(tx, (1)

X,(t)=(-a,)x, (t)+a,T,(tx, (1)

X, (0= (L-a,)x, () +a, T, (tx, 1)

Xya(O)=-ay, )X, (t)+aN+1T1 (txy ., (1)

2

Xy (= (=0, )X,y (1) + 0, T, (tx,, (1) (1.8)

X2N+1 (t): (1_ (XZN+1) XZN (t)+ G‘ZN+1T13 (t’XZN+1(t))’

In this paper, we prove the convergence of two random implicit iterative schemes to a random common fixed
point . Our result is generalization of the results in [16] and some other known results [10, 20] in the literature of
fixed point theory. Firstly we give some definitions.

Through this paper, (2, ) denotes a measurable space and X denotes a real Banach space. For any function

T:QxX — X we denote the n-th iterate T (t, T (t,..., T(t,x))) of Thy T"(t,x). Theletter I denotes the
random mapping 1 : Q x X — X defined by I (o, x) = x and T =1.

Definition 1.1 Let C be a nonempty subset of a separable Banach space X and T : Q x C — C be a random
operator. Then T is said to be an asymptotically nonexpansive random operator if there exists a sequence of

measurable functions r, : Q — [1,0) withlim r_(t) =1 such that

[T -1y < r (vfx- vl
forallx,y e C,ne N andforeachte Q .

Definition 1.2 A mapping f : Q@ — C is called measurable if f ' (BnC)e >  forevery Boral subset B
of X.

Definition 1.3 A functionF : Q xC — C s called a random operator if F (., x):Q — C is measurable for

everyx e C .
Definition 1.4 A measurable mapping g : @ — C is said to be random fixed point of the random operator

F:QxC—>cC ,ifF (w,g(w)): g(w)forallwe Q.
Definition 1.5 A random operator F : Q x C — C issaid to be continuous if, for fixed w € Q ,

F(w,.):C — C iscontinuous.
Now, we prove our main results.
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1. MAIN RESULTS
Theorem 2.1 Let X be a separable Banach space and C be a nonempty, closed and convex subset of X . Let

$;.T,:Q xC — C ,i,je{l,2,...,N} berandom operators defined on C such that at least one of the

following conditions hold forall x,ye C andte Q :
(M) s, (tx) -7, (ty)|<
alp—yll+ o[ = s o« [y =7, ]+ e[ -7 e+ Jy - s ]
a>0,b>0,c>0,1-b-c > 0.
(ii) [s, (tx) -7, (ty)|<
amaxtle = s sl -7yl b=, by -, (o0
0<q<1.
(iii) s, (tx) -7, (ty)| <
amax (B~ [ = s, ol Jy -7, )] =7, e[y s ol

a,p=>20, 0<a <.
(iv) [s, (t.x) =7, (ty) <

amax{he— vl = s, ool y -7, ] =T con ]y - s ol
0<qg<1.
If the random implicit iterative scheme associated with (1.5) or (1.6), satisfying (i)-(iii) converges, then it

converges to a common random fixed point of S; and T;. Further, if (iv) holds, then this common fixed point will
be unique.

Proof. Let us assume that the sequence{ x_} defined by (1.5) has a pointwise limit, that is,

lim x (t)=u(t), forallte Q .As X isa separable Banach space, the mapping x (t) = A(t, f (t)) is

n— o

measurable mapping [6] for any random operator A : QO x C — X and any measurable mapping f : Q — C .

Now, the sequence { x_} constructed by the random implicit iterative schemes (1.5) and (1.6) isa

sequence of measurable mappings as x (t) is measurable and C is convex. Therefore, x : Q@ — C isalso
measurable, being limit of a sequence measurable mappings.

First of all we assume that S, (t,x (t)) = x(t) forx(t) e C . Then after putting x (t) = y (t) = u (t)
into any of the inequalities (i) — (iv) , itis easy to see that T, (t,u (t)) = u (t). Inasimilar manner
T,(tu(t))=u(t) implies s, (t,u(t))=u(t)

Suppose the sequence { x, } generated by implicit iterative scheme associated with S, converges to u, that is,

lim x, (t) =u(t). Then, from (1.5), we have

n— o

X, () =(L-a,, )%, (t)+a,,S (t.x,,(t)).Since !erlxn(t)zu(t), so we have

n+1 7

o ()=, (x>0
If Si, Tj satisfy (i), then

N OED'S (t)||—> 0. Using it, we obtain Hxn (t)-S,(tx,., (t))H—> 0 . From which, it follows that
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s, (e x, @)=, (vu )] = alx, - u ]+ b, ()= 5, (tox, @)+ o) -7, wu 2]
ref | -7, (Lu )]+ o 0=, (ux, )] (2.1)

If Si, T; satisfy (ii), then
ijn (0= @ fx, =5, (L, @) o) -7, (1 (t))M

S, (tx, (t))-T,(tu(t))< X
| T - ] - s, ox, 0] |
(2.2)
Also, if S;,T; satisfy (iii), then
HS. (tx, (1)-T, (tu(t))<a maxjan HX - (t)“y”xn s (t))H'HU(t)_Tj o (t))M
o ' t“xn(t)—TJ.(t,u(t))“,“u(t)—Si(t,xn(t))” |
(2:3)
Further, if T;, S; satisfy (iv), then clearly they will satisfy (ii).
On applying the limit n - o, in (2.1), (2.2), (2.3), we get
o) -7, (o)) < o) -7, (v )], (2.4)

where & = max {b+c,q,a} <1. ThenT, (t,u(t))=u(t). Similarly, we can show that

Si (t‘u (t)) =u (t)
To prove the uniqueness of u (t) in the case (iv), let us assume that v (t) be common fixed point of Sand T

other than u (t), then using (iv), we have
o y=vo)= s, (tu) -7, (v
JHu(t)—v(t)H,Hum— s, (tu(n))]. l
- v - vl oo o o]

< afu-ve),
which further yields (1 - q) [lu (t) - v (t)] < o.
But 0 < g <1, hence Hu (t)-v (t)H < 0, which is a contradiction as norm is always nonnegative, therefore

u(t)=v(t) always.
Theorem 2.2 Let X be a separable Banach space and C be a nonempty, closed and convex subset of X . Let
$,,T,:Q2xC — C,i,J€{l,2,...,N} berandom operators defined on C such that at least one of the

following conditions hold forall x,y e C andte Q :
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(M) s, (tx) -7, (ty)|<
a”x— y||+b[”x—Si(t,x)H+Hy—TJ.(t,y)‘H+c[”x—Tj(t,y)HJrHy—Si(t,x)m,
a>0,b>0,c>0,1-b-c¢c> 0.
(i) [s, (tx) -7, (ty)| <
ames b= -5, =7, ol e, e b=, ol
0<qg<1.
(iii) s, (%) =T, (ty)| <
amax (B~ [ = s, ol Jy -7, )] =7, ey s ol

a,p>20, 0<a <.
(iv) s, (tx) =7, (ty) <

amax{he— vl = s, ool fy -7, o] -7 con ]y - s ol
0<qg<1.
If the random implicit iterative scheme associated with (1.7) or (1.8) satisfying (i)-(iii) converges, then it

converges to a common random fixed point of S; and T;. Further, if (iv) holds, then this common fixed point will
be unique.

Proof. Let us assume that the sequence{ x_} defined by (1.7) has a pointwise limit, that is,
lim x (t)=u(t), forallte Q .As X isa separable Banach space, the mapping x (t) = A(t, f (t)) is

measurable mapping [6] for any random operator A : Q x C — X and any measurable mapping f : Q — C .

Now, the sequence { x, } constructed by the random implicit iterative scheme (1.7) and (1.8) is a sequence

of measurable mappings as x (t) is measurable and C is convex. Therefore, x : Q@ — C is also measurable,
being limit of a sequence measurable mappings.

First of all we assume that S, (t,x(t)) = x(t) forx(t) e C . Then after putting x (t) = y (t) = u(t) into
any of the inequalities (i) - (iv) , itis easy to see that T, (t,u (t)) = u(t). Inasimilar manner
T,(tu(t))=u(t) implies s, (t,u(t))=u(t)

Suppose the sequence { x, } generated by implicit iterative scheme associated with S, converges to u, that is,

lim x (t)=u(t). Then, from (1.7) we have

n— o

X, () =@Q-a,,)x (t)+ea,,S (t.x,,(t)).Since lim x,_ ()= u(t), sowe have

n— o

o ()-8, (1, (1)) - 0
If Si, Tj satisfy (i), then

Is. (tx, () -7, (u )] < al, (- v @+ o] 05, (tx, )+ Jo () -7, u o]
reflk -1 (o)« o 0=, (1x, )] (2.5)

X, ., (=%, (t)||—> 0. Using it, we obtain Hx (t)- S, (t.x,,, (t))H—> 0 . From which, it follows that

If S;,T; satisfy (ii), then
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“s,(t,x (1)) -T,(tu(t)) Sqmaxj ol b (t))H+“U(t)_Tj(tYU(t))“’L
o J { xn(t)—Tj(t,u(t))”+”u(t)—Si(t,xn(t))H |
(2.6)
Also, if S;,T; satisfy (iii), then
b o (t))_T_(t,um)Hsamaxj‘” )—u(t)H,Hxnm—si(t,xn(t))H,Hum—Tj(nu(r))H,L
| LACRARIGIA G I J
(2.7)
Further, if T;, S; satisfy (iv), then clearly they will satisfy (ii).
On applying the limit n — oo, in (2.5), (2.6), (2.7), we get
o )=, (a2 o) -7, (L)), (2.8)

where & = max {b+c,q,a} <1. ThenT, (t,u(t))=u(t). Similarly, we can show that

Si (t’u (t)) =u (t)
To prove the uniqueness of u (t) in the case (iv), let us assume that v (t) be common fixed point of Sand T

other thanu (t), then using (iv) we have

o )=y = s, (tu) -7, (tve))

Jbo-volko tu(t))H' |
tHv(t)—n<t’v<t>>H'Hu<t>—T O) 0=, (Lu ]

afut)-v(v).

which further yields (1 q) [lu (t) - v (t)] < o.

IA

But 0 < g <1, hence Hu (t)-v (t)H < 0, which is a contradiction as norm is always nonnegative, therefore

u(t)=v(t) always.
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