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Abstract: We shall be concerned with the problem of determining a solution of constrained nonlinear 

programming problems. The approach here is to replace a constrained problem with one that is unconstrained. 

The reduced problem is then solved using an iterative technique – “Barrier Function Method” and “Quadratic 

Penalty Function Method”.  
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I. INTRODUCTION: BARRIER FUNCTION METHOD AND QUADRATIC PENALTY 

FUNCTION METHOD 
 

We shall consider only such problems which have the form 

 

  Minimize f(x) subject to gi(x) ≤ 0 for i = 1, 2, ….m.     (1) 

 

Note that problem (1) does not contain any equality constraints. We shall assume that function f is continuous 
over the set F = {x : each gi(x) ≤ 0}, and that gi, gi+1, …… gm are continuous over Rn×1 . Moreover, we shall 

assume that F has a nonempty interior and that each boundary point F is an accumulation point of the interior of 

F. This means that each boundary point of F can be approached via the interior point of F. 

Some common barrier functions for problem (1) are 
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Note that b(x) is, in either case, continuous throughout the interior of F. Moreover, b(x) → ∞ as x approaches 

the boundary of F via the interior of F. Rather solve (1), we intend to solve the following problem: 

 

  Minimize f(x) + 1 / β b(x) subject to each gi(x) < 0     (4) 

  
  where β > 0. 

 
     As an example: 

 
  Minimize x subject to x ≥ 5. 

 
Solution: A barrier function of the type (3) will be used to simplify computations. In particular, let β > 0 and solve the 
problem: 

 

  Minimize x – 1 / β In ∣5 – x ∣ subject to x > 5.       (5) 
 
Problem (5) can be solved in any standard fashion. The minimum value of the objective function occurs when  

x = 5 + 1 / β and is equal to 
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    5 + 1/β – 1 / β In 1 / β              (6) 

Note that for each β > 0, x is larger than 5 and approaches 5 as β → ∞. Since lim
  

 – (1/β) In (1/β) = 0, it also 

follows that (6) approaches the maximum value of 5 for f as β → ∞. 

 

 Since most practical problems have bounded variables, we shall again assume that the set of feasible 

solutions, F, of problem (1) is bounded. It should be noted that the bounds may or may not be explicitly 

displayed in the constraints gi(x) = 0. Nevertheless, with this assumption F is both closed and bounded. 

 In Quadratic Penalty Function Method, we shall again discuss the solution of the problem. 

  Minimize f(x) subject to hi(x) = 0, for i = 1, 2,…..,m     (7) 

where f, h1, h2, ….,hm are now continuously differentiable. We shall again assume that the set F, of feasible 

solutions of (7) is nonempty. The continuity of the hi ensures that F is closed. Since most practical problems 

have bounds imposed on their variables, we shall assume that F is also bounded. As before, the Weierstras’s 

theorem guarantees the existence of a solution, x*, of problem (7). 

 Compute vectors x* and λ* that satisfy. 

  0 =   
L

x




  (x*, λ*) = ∇ f(x*)T + λ*T  
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 (x*) 

 and        

  0 =  
L

x




(x*, λ*) = h(x*)                   (8) 

 

Where L(x, λ) = λT h(x) and h(x) = [h1 ……hm]T. But the system of equations (8) is difficult to solve. To 
overcome this difficulty a method which combines the penalty function method and Langrange’s method was 

devised for solving (8). This new method could be called Lagrangian-penalty function method. However, it is 

often referred to as multiplier methods. We restrict our analysis to a particular method called the quadratic 

penalty function method. Our approach is some intuitive. 

 Consider a solution x* of (7). Let λ* be the corresponding vector of Lagrange multipliers for which 

equations (8) hold. Note that whenever x ∈ F, then 

  L(x*, λ*) = f(x*) ≤ h(x) = f(x) + λ*T h(x*) = L(x*, λ*) 

    Thus,   min{ L(x*, λ*) : x ∈ F} = L(x*, λ*)  and 

  min {f(x): x ∈ F} = min { L(x*, λ*) : x ∈ F}               (9) 
This suggests that rather than solve (7) we could solve the problem on the right side of (9), possibly using a 

penalty function method. 

 i.e. 

  Minimize f(x) + λ*Th(x) + β /2 
1

m

i 

 (hi(x))2.     (10) 

where β > 0. Of course the problem is that λ* is not known at the set of the problem.  

The next result suggest an alternative strategy consisting of solving a sequence of problems of the form 

  Minimize f(x) + λT
k h(x) + βk /2   

1

m

i 

  (hi(x))2  ,            where λk ∈ Rm×1 . 

II. THEOREMS 

Theorem 1: In problem (1) assume that f is continuous over F, and that each gi  is continuous over Rn×i. 

Assume also that F is nonempty, closed and both; that each boundary point of positive numbers for which  

lim
k  

 βk = ∞ and that for each k there exists an xk which solves the problem. 

    Minimize βk subject to each gi(x) < 0 where 

Bk(x) = f(x) + 1/ βk b(x), and b(x) has the form (2). Then 

    Min{ f(x) : gi(x) ≤ 0 for all i} = lim
k  

 βk (x). 

Moreover, if is a limit point of any converging subsequence of {xk}, then solves problem (1). Finally,  

    lim
k  

(1 / βk) b(xk) = 0. 
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 The result suggests an interactive procedure for solving (1) namely, select or determine a method for 

generating an increasing sequence of positive number { βk } that tends to infinity. Then for each k, solve the 

problem. 

 

 Minimize f(x) + 1/ βk b(x)   subject to gi(x) < 0 for i = 1, 2, ….,m        (11) 

 

Denote the solution by xk. The values f(xk ) + 1/ βk b(x) will usually approach the minimum value of f. The 
process terminates when the desired accuracy is reached. 

 Since the process works in the interior of F, it is necessary to determine an initial point x0 for which 

each gi(x0) < 0. The iterative procedure for minimizing f(x) + 1/ β1 b(x) would start at x0 . Finding such a point 

can itself be difficult, and it is a serious drawback of the method. As with penalty functions, barrier function 

methods can be slow to converge as the bounding is approached. 

 

 Ideally, the barrier function prevents the search from leaving the interior of F by becoming infinite as 

the boundary of F is approached. Hence in the ideal situation one would not have to worry about any constraint, 

gi(x) < 0, of (7). However, in practice a line search might step over the boundary into the exterior of F. When 

this happens it is possible to experience a decrease in b(x), and hence, B(x). For instance, in the example above 

let xk = 5.01, ∆x = 0.02, β = 1 / 2, and hence, xk+1 = xk - ∆x = 4.99. Then B(5.01) = 205.01 and B(4.99) = 195.01, 
where B(x) = x – 2(5 –x)-1. In general, one must determine if gi(xk) < 0 for i = 1,2, ….,m for each xk that is 

generated. 

 

Theorem2. In problem (7) assume that the functions h1, h2, …., hm and f are all continuous and that the set F of 

feasible solutions is nonempty, closed and bounded. Let {λk}be a sequence of bounded vectors in Rm×1, { βk } be 

a sequence of increasing positive numbers that tends to infinity, and let Xk solve the problem: 

     Minimize Lk(x , λk) = f(x) + λT
k h(x) + βk/2 p(x),      (12) 

Where p(x) =  
1

m

i 

  (hi(x))2. Then every accumulation point of {xk} solves (7). In particular if a sequence {xki} 

of {xk} converges to  x    , then 

(1) p ( x  )  =
   

lim
i

k  
  p(xki) = 0 

 

(2) 
   

lim
i

k  
 βki  / 2 p(xi) = 0 

 

(3) min (f(x) : x ∈ F} =  
   

lim
i

k  
  Lki (x, λki). 

Proof: Suppose that the sequence {xki} of {xk} converges to  x  .  Since corresponding subsequence {λki} of 

{λk} is bounded it possess accumulation points. Let   be one of these accumulation points. Then there is a 

subsequence of {λki} that convergence to   . The corresponding subsequences of {xki} still converges to x  . 

To simplify notation, we shall denote both of these convergence subsequences by {λki} and {xki}, respectively. 

Thus λki   →         and xki   → x as ki → ∞. 

 Let x* denote a solution of problem (7) from the definition of xki , it follows that 

  Lki (xki, λki) ≤ Lki (x, λki) 

for all x ∈ Rn×1. Since h(x) = 0 and p(x) = 0 when x ∈ F, it follows from this least inequality that 

   Lki (xki, λki)    ≤   inf { Lki (x, λki) : x ∈ Rn×1 } 

    ≤   inf { Lki (x, λki) : x ∈ F } 

    =   inf { f(x) : x ∈ F }  

    =   f(x*) 

Hence,       0 ≤ βki /2 p(xki)  ≤  f(x*) – f(xki) – λT
ki h(xki)            (13) 

Since the limit of the far right side of expression (13) exists, it follows that 

 

    M = Sup        βki /2 p(xki)    
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exists. This derives p ( x ) =
   

lim
i

k  
 p(xki) = 0. Thus, h( x ) = 0 and x  ∈ F, so that f(x*) ≤ f ( x ). Since the 

sequence  x   {λki} is bounded, it follows from (13) that 0 ≤ f(x*) ≤ f  ( x  ).    Thus, f ( x ) ≤ f (x*), therefore,  

 

f(x*) = f ( x  )  and M = 0. It can be shown that 

    f ( x  )  =   
   

lim
i

k  
Lk(xki, λki). 

This completes the proof of the theorem. 

The above proof gives no indication of how the sequence {λk} could possibly be generated. We suggest 

one approach now. 

 Suppose that h1, h2, ….., hm and f are twice continuously differentiable. Let {βk} be an increasing 

sequence of positive numbers that tends to infinity, and let {εk} be a decreasing sequence of nonnegative 

numbers that tends to 0. Select a vector λ1 ∈ Rm×1 and determine a solution x1 of the problem. 
  Minimize L1(x, λ1) = f(x) + λT

1 h(x) + β1/2 p(x), 

    such that  ║  
x




  L1(x1, λ1) ║ ≤ ε1. 

Then define λ2 by the expression 

    λ2 = λ1 + β1h(x1). 

Next determine the solution x2 of the problem 

    Minimize L2(x, λ2) = f(x) + λT
2 h(x) + β2/2 p(x) 

    such that  ║ 
x




  L2(x2, λ2) ║ ≤ ε2. 

Continuing in this fashion, two sequences {λk} and {xk} are generated so that 

    λk+1  = λk + βk h(xk)                  (14) 

and  

    ║  
x




 Lk (xk, λk) ║ ≤  εk. 

Note that  

       T 

 
x




  Lk (xk, λk) = ∇ f(xk)

T + λT
k    

h

x




 (xk) + βk h(xk)

T  
h

x




  (xk)    

   

   = ∇ f(xk)
T + (λT

k  + βk h(xk)
T )  

h

x




  (xk)           (15) 

Now suppose that a subsequence {xki} of {xk} converges to a vector  x  .  Assume that ∣ 
h

x




 ( x  ) ∣ ≠ 0. Then  

when xki is near     , it follows that  ∣  
h

x




 (xk)  ∣ ≠ 0 and  

h

x




 (xk) is nonsingular. It follows from (15) that 

x




Lki (xki, λki)   T 

h

x




 (xki)     

-1         = ∇ f(xki)
T          

h

x





  (xki) -1      + ( λT
ki + βki h(xki)

T ).   (16)  

      

But 

        
x




Lki (xki, λki)  

T       →  0 as ki  → ∞.        

  

So, the left side of (16) tends to zero as ki  → ∞. It follows that 

 ( λT
ki + βki h(xki)

T) →   , 

 

x
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where        = - ∇ f( x   )T (  
h

x




 ( x  ))-1 .        (17) 

when the sequence {λki} is bound, then it can be shown that h ( x  ) = 0 and x   and   solves (7). Note that 

 

   ∇ f( x  )T  +   T   h

x




  ( x  )   =  0. 

Hence, x    and     satisfy equations (8).  This suggests the following iterative procedure for solving the 

problem (7).Select an increasing sequence {βk} of positive numbers that tends to infinity, and a sequence {εk} of 

nonnegative numbers that tends to zero. Let k =1. Let us put the problem in the form of an algorithm2.  

 

III. ALGORITHMS 

 

Algorithm1: 
Step 1: Determine a point x0 that satisfies the inequalities gi(x) < 0 for i   =  1, 2, …., m. 

Step 2: Determine a sequence of increasing positive number { βk } that tends to infinity.  

             Let k = 1. 
Step 3: Determine a solution xk of the problem.  

             Minimize f(x) – 1/ βk 

1

m

i 

 1 / gi(x)  subject to gi(x) < 0 for i  = 1, 2, ….,m. 

             Check to be sure that gi (xk) < 0 for each i before continuing. Start the search with  xk-1. 

Step 4: If the required accuracy has been achieved, then stop. Otherwise replace k with k + 1 and return to step 3. 

Algorithm2: 
Step 1: Determine a solution xk of the problem: 

  Minimize f(x) + λT
k (x) + βk / 2 p(x) 

  that satisfies 

   ║
x




  Lk (xk, λk) ║ ≤ εk. 

 

 If the required accuracy has been achieved, then stop. Otherwise go to step2. 

Step 2: Compute λk+1 = λk + βk h(xk). Replace k by k + 1 and return to step 1. 
 

IV. EXAMPLES 

Example1 : Use barrier function method to solve- 
 

Minimize Bk(x) = f(x) 1/ βk b(x), 

 

where b(x) = - (x2
1 + x2

2 – 1)-1, β1 = 1 and βk = 2 βk-1. The results are summarized in Table1. 

 
 

Table1: Barrier Function Method 
K ΒK xk Bk(xk) f(xk) B(xk) 

1 1 [-0.31810    -0.31810]T -0.61752 -0.63620 1.25372 

2 2 [-0.41964    -0.41964]T -0.06744 -0.83928 1.54368 

3 4 [-0.50000    -0.50000]T -0.50000 -1.00000 2.00000 

4 8 [-0.55947    -0.55947]T -0.78470 -1.11894 2.67389 

5 16 [-0.60233   -0.60233]T -0.97689 -1.20466 3.64435 

. . . . . . 

. . . . . . 

20 524288 [-0.70629   -0.70629]T -1.41175 -1.41258 433.11043 

21 1048576 [-0.70653    -0.70653]T -1.41248 -1.41306 613.22606 

. . . . . . 

. . . . . . 

36 235 [-0.70711    -0.70711]T -1.41422 -1.41422 109890.11 
 

Min f(x) = x1 + x2  subject to x2
1 + x2

2 ≤ 1 
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Example2: Let us apply the Quadratic Penalty Function Method to solve –  

Minimize f(x) = x1 + x2  subject to x2
1 + x2

2 ≤ 1. 

Solution: Rewrite the above problem as 

  Minimize f(x) = x1 + x2  subject to 1 - x2
1 - x

2
2 – x2

3 = 0. 

Next set λ1 = 1, β1 = 1, ε1 = 0.001, βk+1 = 4βk, λk+1 = λk + βkh(xk), where  
h(x) = 1 - x2

1 - x
2
2 – x2

3 and εk+1 = εk / 10. Then solve the sequence of problems. 

 Minimize Lk(x, λk) = f(x) + λk(1 - x2
1 – x2

3 ) + βk / 2 (1 - x2
1 - x

2
2 – x2

3)
2. 

Using Newton’s method in the direction of steepest descent beginning with the point 

[ 2  0  0 ]T where k = 1. The results of calculation are given in Table2. 

 

         Table2:  Quadratic Penalty Function Method 
 

 

K 

 

βK 

 

λK 

 

xK 

 

f(xK) 

 

εk ║
L

x




( xK ,λK)║ 

 

1 1 1 [-1.10776  -1.10654  0]T -2.21430 10-3 7.933 × 10-4 

2 4 -0.4516 [-0.72766  -0.72761  0]T -1.45527 10-4 4.817 ×10-5 

3 16 -0.6872 [-0.70754  -0.70754  0]T -1.41508 10-5 1.615 ×10-6 

4 64 -0.7067 [-0.70711  -0.70711  0]T -1.41422 10-6 1.267 ×10-7 

5 256 -0.7071 [-0.70711  -0.70711  0]T -1.41422 10-7 5.508 ×10-10 

 

Min f(x) = x1 + x2  subject to x2
1 - x

2
2 ≤ 1 

 
V. CONCLUSION 

 
 Barrier function method and Quadratic Penalty Function Method are added to the objective function 

and the resulting function is minimized. The difference is that the solutions are interior points. The purpose of 

the Barrier function and the Quadratic Penalty Function Method is to prevent to the solutions from leaving the 

interior point and we also derived algorithms.   Using Barrier function method and Quadratic Penalty Function 
Method, we have solved the examples and the results that are summarized in the Tables. Thus we show that the 

Constrained Problem is converted into Unconstrained Problem by Barrier Function Method and Quadratic 

Penalty Function Method. 
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