On The Non Homogeneous Ternary Quintic Equation

$$
x^{2}-x y+y^{2}=7 z^{5}
$$

M.A.Gopalan, S. Vidhyalakshmi, A.Kavitha, M.Manjula
Department of Mathematics,Shrimati Indira Gandhi College,Tiruchirappalli - 620002.

Abstract

The ternary Quintic Diophantine Equation given by is $\mathrm{x}^{2}-\mathrm{xy}+\mathrm{y}^{2}=7 \mathrm{z}^{5}$ analyzed for its patterns of non - zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

KEY WORDS: Quintic equation with three unknowns, Integral solutions.

I. INTRODUCTION

The theory of diophantine equations offers a rich variety of fascinating problems. In particular,quintic equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since ambiguity[1-3].For illustration, one may refer [4-9] for quintic equation with three unknowns. This paper concerns with the problem of determining non-trivial integral solutions of the non-homogeneous quintic equation with three unknowns given by $x^{2}-x y+y^{2}=7 z^{5}$.A few relations among the solutions are presented.

II. NOTATIONS USED

- $t_{m, n}$ - Polygonal number of rank n with size m.
- $\quad P_{n}^{m} \quad-$ Pyramidal number of rank n with size m.
- $\mathrm{ct}_{\mathrm{m}, \mathrm{n}}$ - Centered polygonal number of rank n with size m .
- $\quad \mathrm{gn}_{\mathrm{a}}$ - Gnomonic number of rank a
- so ${ }_{n}$ - Stella octangular number of rank n
- $s_{n} \quad-$ Star number of rank n
- $\mathrm{pr}_{\mathrm{n}} \quad$ - Pronic number of rank n
- pt_{n} - Pentatope number of rank n
- $C P_{m, n}$ - Centered pyramidal number of rank n with size m .
- $\quad f_{m, s}^{n}-\mathrm{m}$-dimensional figurate number of rank n with s sides.

III. METHOD OF ANALYSIS

The quintic Diophantine equation with three unknowns to be solved for its non-zero distinct integral solution is

$$
\begin{equation*}
x^{2}-x y+y^{2}=7 z^{5} \tag{1}
\end{equation*}
$$

Introduction of the linear transformation

$$
\begin{equation*}
\mathrm{x}=\mathrm{u}+\mathrm{v} \text { and } \mathrm{y}=\mathrm{u}-\mathrm{v} \tag{2}
\end{equation*}
$$

in (1) leads to $u^{2}+3 v^{2}=7 z^{5}$
Different patterns of solutions of (3) and hence that of (1) using (2) are given below

1. Pattern -1

$$
\begin{align*}
& \text { Let } z=z(a, b)=a^{2}+3 b^{2} \tag{4}\\
& \text { Write } \quad 7=(2+i \sqrt{3})(2-i \sqrt{3}) \tag{5}
\end{align*}
$$

Using (4) \& (5) in (3) and applying the method of factorization, define

$$
u+i \sqrt{3} v=(2+i \sqrt{3})(a+i \sqrt{3} b)^{5}
$$

Equating the real and imaginary parts, we have

$$
\begin{aligned}
& u=u(a, b)=2 a^{5}-15 a^{4} b-60 a^{3} b^{2}+90 a^{2} b^{3}+90 a b^{4}-27 b^{5} \\
& v=v(a, b)=a^{5}+10 a^{4} b-30 a^{3} b^{2}-60 a^{2} b^{3}+45 a b^{4}+18 b^{5}
\end{aligned}
$$

Substituting the above values of u and v in (2), we get

$$
\begin{align*}
& x=x(a, b)=3 a^{5}-5 a^{4} b-90 a^{3} b^{2}+30 a^{2} b^{3}+135 a b^{4}-9 b^{5} \tag{6}\\
& y=y(a, b)=a^{5}-25 a^{4} b-30 a^{3} b^{2}+150 a^{2} b^{3}+45 a b^{4}-45 b^{5} \tag{7}
\end{align*}
$$

Thus (4), (6) and (7) represent the non-zero distinct solutions of (1) in two parameters.
A few interesting properties observed are as follows:

1. $x(a, 1)+y(a, 1)+54=120 f_{5,6}^{a}-130 f_{4,6}^{a}+15 C P_{7, a}+344 t_{3, a}+53 t_{4, a}$
2. $y(a, 1)-z^{2}(a, 1)-224=120 f_{5,3}^{a}-30 f_{4,6}^{a}-25 S O_{a}+48 S_{a}+668 t_{3, a}-332 t_{4, a}$
3. $x(a, 1)-3 y(a, 1)-126=300 f_{4,4}^{a}-150 \mathrm{OH}{ }_{a}-545 t_{4, a}$
4. $x(a, 1)-3 y(a, 1)+39 t_{4,3 a}=10 S_{a^{2}}+t_{22, a^{2}}+116$
5. $x(a, 1)-3 y(a, 1)+41 z(a, 1)=35 t_{6, a^{2}}-43 g n_{(2 a)^{2}}+206$
6. $x(a, 1)+y(a, 1) \equiv 0(\bmod 2)$
7. $x(a, 1)-3 y(a, 1) \equiv 56(\bmod 70)$
8. $3 y(1, b)-x(1, b) \equiv 0(\bmod b)$
9. $38416\left\{5 \mathrm{x}(\mathrm{a}, 1)-\mathrm{y}(\mathrm{a}, 1)-420 \mathrm{CP}_{6, \mathrm{a}}\right\}$ is a quintic integer.

2. Pattern-2:

In addition to (5),

$$
\text { Write } 7 \text { as } 7=\frac{1}{4}(1+i 3 \sqrt{3})(1-i 3 \sqrt{3})
$$

Following the procedure similar to Pattern-1, the non-zero distinct integer values of x, y and z satisfying (1) are given by

$$
\begin{aligned}
& x=x(a, b)=2 a^{5}-20 a^{4} b-60 a^{3} b^{2}+120 a^{2} b^{3}+90 a b^{4}-36 b^{5} \\
& y=y(a, b)=-a^{5}-25 a^{4} b+30 a^{3} b^{2}+150 a^{2} b^{3}-45 a b^{4}-45 b^{5} \\
& z=z(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Properties:

1. $x(a, 1)-y(a, 1)-9=120 f_{5,5}^{a}-90 f_{4,6}^{a}-45 S O_{a}+78 \operatorname{Pr}_{a}-118 t_{4, a}$
2. $x(a, 1)+2 y(a, 1)+126=395 t_{4, a}+150 P a^{5}-150 f_{4,6}^{a}$
3. $\mathrm{x}(\mathrm{a}(\mathrm{a}+1), 1)+2 \mathrm{y}(\mathrm{a}(\mathrm{a}+1), 1)+140\left(\mathrm{t}_{3, \mathrm{a}}\right)^{4}+126=420\left(\operatorname{Pr}_{\mathrm{a}}\right)^{2}$
4. $x(1, b)+2 y(1, b)+35 C P_{6,2 b}+63\left(g n_{63 b}-1\right)=70 S O_{b}$
5. $x(a, 1)-y(a, 1)+z^{2}(a, 1) \equiv 0(\bmod 3)$

3. Pattern-3:

Also, Write 7 as

$$
7=\frac{1}{4}(5+i \sqrt{3})(5-i \sqrt{3})
$$

For this choice of 7, the non-zero distinct integer value of x, y and z satisfying (1) are given by

$$
\begin{aligned}
& x=x(a, b)=3 a^{5}+5 a^{4} b-90 a^{3} b^{2}-30 a^{2} b^{3}+135 a b^{4}+9 b^{5} \\
& y=y(a, b)=2 a^{5}-20 a^{4} b-60 a^{3} b^{2}+120 a^{2} b^{3}+90 a b^{4}-36 b^{5} \\
& z=z(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Properties:

1. $x(a, 1)-y(a, 1)-45=24 f_{5,7}^{a}-186 f_{4,6}^{a}+104 P a^{5}+90 t_{3, a}-191 t_{4, a}$
2. $x(a, 1)-9=72 f_{5,5}^{a}-90 f_{4,6}^{a}-24 C P_{3, a}-6 P a^{5}-t_{92, a}-13 t_{4, a^{2}}+2 t_{9, a}-7 t_{4, a}$
3. $x(a, 1)+y(a, 1)+27=120 f_{5,7}^{a}-540 f_{4,4}^{a}-50 C P_{3, a}+340 \operatorname{Pr}_{a}-55 t_{4, a}$
4. $2 \mathrm{x}(\mathrm{a}, 1)+3 \mathrm{y}(\mathrm{a}, 1) \equiv 0(\bmod 2)$
5. $4 \mathrm{x}(\mathrm{a}, 1)+\mathrm{y}(\mathrm{a}, 1) \equiv 14(\bmod 30)$
6. $8\left\{2 x(1, b)-3 y(1, b)+70 \mathrm{SO}_{b}-63\left[g n_{b^{5}}-1\right]\right\}$ is a cubical integer
7. Each of the following represents a nasty number:

- $-2\left\{4 x(1, b)+y(1, b)-14 g n_{22 b^{4}}+4 t_{4, b^{2}}\right\}$
- $6 z(a, a)$

IV. REMARKABLE OBSERVATIONS

I: Consider x and y to be the length and breadth of a rectangle R , whose area, perimeter and length of its diagonal are respectively denoted by A, P and L .
Then, it is noted that,

- $P^{2}-12 A \equiv 0(\bmod 28)$
- $\mathrm{L}^{2}-\mathrm{A} \equiv 0(\bmod 7)$
- $2401\left\{L^{2}-A\right\}$ is a quintic integer

II: Employing the integral solutions of (1), a few interesting results among the special numbers are exhibited.

1) $2401\left\{\left[\frac{3 P_{x}^{3}}{t_{3, x+1}}\right]^{2}+\left\lceil\frac{6 P_{y-2}^{3}}{\operatorname{Pr}_{y-2}}\right]^{2}-\left\lceil\frac{P_{x-1}^{4}}{t_{3,2 x-2}}\right\rceil\left\lceil\left[\frac{4 P_{y}^{5}}{t_{3, y}}\right]\right\}\right.$ is a quintic integer.
2) Each of the following represents a nasty number:
$-\quad-6\left[\frac{36 \mathrm{P}_{\mathrm{x}-2}^{3}}{\mathrm{~S}_{\mathrm{x}-1}-1}\right]^{2}+6\left[\frac{4 \mathrm{P}_{\mathrm{y}}^{5}}{\mathrm{t}_{3, y}}\right]\left[\frac{\mathrm{P}_{\mathrm{x}}^{4}}{\mathrm{t}_{6, x+1}}\right]+42\left[\frac{\mathrm{t}_{3,2 \mathrm{z-1}}}{\mathrm{gn}_{\mathrm{z}}}\right]^{5}$
$\bullet \quad-6\left\lceil\frac{3\left(\mathrm{P}_{\mathrm{y}-1}^{4}-\mathrm{P}_{\mathrm{y}-1}^{3}\right)}{\mathrm{t}_{3, y-2}}\right]+6\left\lceil\frac{\mathrm{P}_{\mathrm{x}}^{5}}{\mathrm{t}_{3, \mathrm{x}}}\right\rfloor\left\lceil\left[\frac{12 \mathrm{P}_{\mathrm{y}}^{5}}{\mathrm{~S}_{\mathrm{y}-1}-1}\right\rfloor+42\left\lfloor\frac{6 \mathrm{P}_{\mathrm{z}-1}^{4}}{\mathrm{t}_{3,2 \mathrm{z}-2}}\right]^{5}\right.$

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES:

[1]. L.E.Dickson, History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York (1952).
[2]. L.J.Mordell, Diophantine equations, Academic Press, London(1969).
[3]. Carmichael ,R.D.,The theory of numbers and Diophantine Analysis,Dover Publications, New York (1959)
[4]. M.A.Gopalan \& A.Vijayashankar, An Interesting Diophantine problem $x^{3}-y^{3}=2 z^{5}$ Advances in Mathematics, Scientific Developments and Engineering Application, Narosa Publishing House,2010, Pp 1-6.
[5]. M.A.Gopalan \& A.Vijayashankar, Integral solutions of ternary quintic Diophantine quation $x^{2}+(2 k+1) y^{2}=z_{\text {,International Journal of Mathematical } \quad \text { Sciences 19(1-2), (jan-june 2010), 165-169. }}$
[6]. M.A.Gopalan,G.Sumathi \& S.Vidhyalakshmi, Integral solutions of non-homogeneous quintic equation with three unknowns $x^{2}+y^{2}-x y+x+y+1=\left(k^{2}+3\right)^{n} z^{5}$ technology, Vol 2, Issue 4, April 2013, Pp 920-925.
[7]. S.Vidhyalakshmi ,K.Lakshmi and M.A.Gopalan , Integral solutions of non-homogeneous ternary quintic equation

$$
a x^{2}+b y^{2}=(a+b) z^{5}, a, b>0 \text {,Archimedes J.math., 3(2),2013,Pp 197-204. }
$$

[8]. S.Vidhyalakshmi, K.Lakshmi and M.A.Gopalan , Integral solutions of non-homogeneous ternary quintic equation $a x^{2}-b y^{2}=(a-b) z^{5}, a, b>0$,International journal of computational Engineering research, Vol 3, Issue 4, April 2013,Pp 45-50.
[9]. M.A.Gopalan,G.Sumathi \& S.Vidhyalakshmi, Integral solutions of non-homogeneous ternary quintic equation in terms of pells sequence $x^{3}+y^{3}+x y(x+y)=2 z_{\text {,JAMS, Vol.6, no.1,April 2013, page no.59-62 }}$

