
Research Inventy: International Journal Of Engineering And Science

Vol.3, Issue 5 (July 2013), Pp 47-53
Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com

47

“Web Based Spatial Ranking System”

1
Mr. Vijayakumar Neela,

2
Prof. Raafiya Gulmeher

(Dept. of Computer Science and Engineering, KBNCE, Gulbarga /VTU Belgaum, India)

ABSTRACT - A spatial preference query ranks objects based on the qualities of features in their spatial

neighborhood. For example, using a real estate agency database of flats for lease, a customer may want to rank
the flats with respect to the appropriateness of their location, defined after aggregating the qualities of other

features (e.g., restaurants, cafes, hospital, market, etc.) within their spatial neighborhood. Such a neighborhood

concept can be specified by the user via different functions. It can be an explicit circular region within a given

distance from the flat. Another intuitive definition is to assign higher weights to the features based on their

proximity to the flat. In this paper, formally define spatial preference queries and propose appropriate indexing

techniques and search algorithms for them. Extensive evaluation of this methods on both real and synthetic data

reveals that an optimized branch-and-bound solution is efficient and robust with respect to different parameters.

KEYWORDS - Query processing, spatial databases

I. INTRODUCTION
Spatial database systems manage large collections of geographic entities, which apart from spatial

attributes contain non spatial information (e.g., name, size, type, price, etc.). In this paper, they have presented

an interesting type of preference queries, which select the best spatial location with respect to the quality of

facilities in its spatial neighborhood. The set D of interesting objects (e.g., candidate locations), a top-k spatial

preference query retrieves the k objects in D with the highest scores. The score of an object is defined by the

quality of features (e.g., facilities or services) in its spatial neighborhood.
Traditionally, there are two basic ways for ranking objects:

• Spatial ranking, which orders the objects according to their distance from a reference point.

• Non-spatial ranking, which orders the objects by an aggregate function on their non-spatial values.

The top-k spatial preference query integrates these two types of ranking in an intuitive way. As

indicated by our examples, this new query has a wide range of applications in service recommendation and

decision support systems. To gain knowledge yet, there is no existing efficient for processing the top-k spatial

preference query. A bruteforce approach for evaluating it is to compute the scores of all objects in D and select

the top-k ones. This method, however, is expected to be very expensive for large input data sets. In this paper,

this propose alternative techniques that aim at minimizing the accesses to the object and feature data sets, while

being also computationally efficient. This technique applies on spatial-partitioning access methods and compute

upper score bounds for the objects indexed by them, which are used to effectively prune the search space.
Specifically, this contribute the branch-and-bound (BB) algorithm and the feature join (FJ) algorithm for

efficiently processing the top-k spatial preference query. Furthermore, this paper studies three relevant

extensions that have not been investigated in our preliminary work [1]. The first extension is an optimized

version of BB that exploits a more efficient technique for computing the scores of the objects. The second

extension studies adaptations of the proposed algorithms for aggregate functions other than SUM, e.g., the

functions MIN and MAX. The third extension develops solutions for the top-k spatial preference query based on

the influence score. For example, consider a real estate agency office that holds a database with available flats

for lease. Here "feature" refers to a class of objects in a spatial map such as specific facilities or services. A

customer may want to rank the contents of this database with respect to the quality of their locations, quantified

by aggregating non-spatial characteristics of other features (e.g., restaurants, cafes, hospital, market, etc.) in the

spatial neighborhood of the flat (defined by a spatial range around it). Quality may be subjective and query-

parametric. As another example, the user (e.g., a tourist) wishes to find a hotel p that is close to a high-quality
restaurant and a high quality cafe.

Web Based Spatial Ranking System

48

Fig. la shows the locations of an object data set D (hotels) in white, and two feature data sets: the set J I

(restaurants) in gray, and the set J 2 (cafes) in black. Feature points are labeled by quality values that can be

obtained from rating providers (e.g., http://www.zagat.coml). For the ease of discussion, the qualities are
normalized to values in [0,1]. The score T(P) of a hotel p is defined in terms of:

• The maximum quality for each feature in the neighborhood region of p.

• The aggregation of those qualities

A simple score instance, called the range score, binds the neighborhood region to a circular region at p

with radius E (shown as a circle), and the aggregate function to SUM. For instance, the maximum quality of

gray and black points within the circle of PI are 0.9 and 0.6, respectively, so the score PI is T(Pa =0.9 + 0.6 =

l.5.Similarly,we obtain T(P2) =1.0 + 0.1 =1.1 and r(p3) = 0.7 + 0.7 = l A. Hence, the hotel p, is returned as the

top result. The semantics of the aggregate function is relevant to the user’s query. The SUM function attempts to

balance the overall qualities of all features. For the MIN function, the top result becomes P3, with the score

T(P3) = min{ 0.7, 0.7} = 0.7. It ensures that the top result has reasonably high qualities in all features. For the

MAX function, the top result is p2, with score of r(p2) = max{ 1.0, 0.1} = 1.0. It is used to optimize the quality
in a particular feature, but not necessarily all of them. The neighborhood region in the above spatial preference

query can also be defined by other score functions that is the influence score. As opposed to the crisp radius E

constraint in the range score, the influence score smoothens the effect of E and assigns higher weights to cafes

that are closer to the hotel.

Fig. 1 b shows a hotel P5 and three cafes s" S2, S3 (its quality with the weight 2·j, where j is the order

of the smallest circle containing Sf. For example, the scores of s" S2 and S3 are0.3 12' = 0.15,0.9 1 22 = 0.225

and 1.0 / 2 3 = 0.125,respectively. The influence score of P5 is taken as the highest value (0.225). Furthermore,

this paper studies three relevant extensions that have not been investigated in this preliminary work. The first

extension is an optimized version of BB that exploits a more efficient technique for computing the scores of the

objects.

The second extension studies adaptations of the proposed algorithms for aggregate functions other than

SUM, e.g., the functions MIN and MAX. The third extension develops solutions for the top-k spatial preference
query based on the influence score.

II. RELATED WORK
Object ranking is a popular retrieval task in various applications. In relational databases, it rank tuples

using an aggregate score function on their attribute values. For example, a real estate agency maintains a

database that contains information of flats available for rent. A potential customer wishes to view the top 10

flats with the largest sizes and lowest prices. In this case, the score of each flat is expressed by the sum of two
qualities: size and price, after normalization to the domain [0, 1] (e.g., 1 means the largest size and the lowest

price). In spatial databases, ranking is often associated to nearest neighbor (NN) retrieval. Given a query

location, this is interested in retrieving the set of nearest objects to it that qualify a condition (e.g., restaurants).

Assuming that the set of interesting objects is indexed by an R-tree, this can apply distance bounds and traverse

the index in a branch-and-bound fashion to obtain the answer.

Nevertheless, it is not always possible to use multidimensional indexes for top-k retrieval. First, such

indexes break down in high-dimensional spaces. Second, top-k queries may involve an arbitrary set of user-

specified attributes (e.g., size and price) from possible ones (e.g., size, price, distance to the beach, number of

bedrooms, floor, etc.) and indexes may not be available for all possible attribute combinations (i.e., they are too

expensive to create and maintain). Third, information for different rankings to be combined (i.e., for different
attributes) could appear in different databases (in a distributed database scenario) and unified indexes may not

exist for them. Solutions for top-k queries [2] focus on the efficient merging of object rankings that may arrive

from different (distributed) sources. Their motivation is to minimize the number of accesses to the input

rankings until the objects with the top k aggregate scores have been identified. To achieve this, upper and lower

bounds for the objects seen so far are maintained while scanning the sorted lists. The first review of R-tree,

which is the most popular spatial access method and the NN search algorithm of [4]. Then, it survey recent

research of feature based spatial queries.

A. Special Query Evaluation on R-Tree

The most popular spatial access method is the R-tree, which indexes minimum bounding rectangles

(MBRs) of objects can no longer be used to prune a combination based on distances among the entries in the

combination. Any possible combination must be considered if its upper bound score is above the best score
found.

Web Based Spatial Ranking System

49

Fig. 2 shows a set D = { Pl ... p8}of spatial objects (e.g., points) and an R-tree that indexes them. R-trees can

efficiently process main spatial query types, including spatial range queries, nearest neighbor queries, and

spatial joins. Given a spatial region W, a spatial range query retrieves from D the objects that intersect W. For

instance, consider a range query that asks for all objects within the shaded area in Fig. 2. Starting from the root

of the tree, the query is processed by recursively following entries, having MBRs that intersect the query region.

For instance, el does not intersect the query region, thus the sub tree pointed by el cannot contain any query

result. In contrast, e2 is followed by the algorithm and the points in the corresponding node are examined

recursively to find the query result P7.

 A nearest neighbor query takes as input a query object q and returns the closest object in D to q. For

instance, the nearest neighbor of q in Fig. 2 is P7. Its generalization is the, k-NN query, which returns the k
closest objects to q, given a positive integer k. NN (and k-NN) queries can be efficiently processed using the

best-first (BF) algorithm of [4], provided that D is indexed by an R-tree. A min-heap H which organizes R-tree

entries based on the (minimum) distance of their MBRs to q is initialized with the root entries. In order to find

the NN of q in Fig. 2, BF first inserts to H entries el, e2 , e3 and their distances to q. Then, the nearest entry is e2

retrieved from H and objects P1, P2, P3 are inserted to H. The next nearest entry in H is P7, which is the nearest

neighbor of q. In terms of I/ O, the BF algorithm is shown to be no worse than any NN algorithm on the same R-

tree [4].

The aggregate R-tree (a R-tree) [6] is a variant of the R-tree, where each non leaf entry augments an
aggregate measure for some attribute value (measure) of all points in its sub-tree. As an example, the tree shown

in Fig. 2 can be upgraded to a MAX a R-tree over the point set, if entries el.e2 ,e3 contain the maximum

measure values of sets{ P2, P3}, { P1. P8, P7 }, { P4, P5, P6}, respectively. Assume that the measure values of

P4, Ps, P6 are {0.2, 0.l,0.4}, respectively. In this case, the aggregate measure augmented in e3 would be

MAX{0.2, 0.l,0.4}=0.4. In this paper, we employ MAX a R-trees for indexing the feature data sets (e.g.,

restaurants), in order to accelerate the processing of top-k spatial preference queries.

Given a feature data set F and a multidimensional region R, the range top-k query selects the tuples

(from F) within the region R and returns only those with the k highest qualities in [7]. It indexed the data set by

a MAX a R-tree and developed an efficient tree traversal algorithm to answer the query. Instead of finding the

best k qualities from F in a specified region, our (range score) query considers multiple spatial regions based on

the points from the object data set D, and attempts to find out the best k regions (based on scores derived from

multiple feature data sets Fc).

B. Feature-Based Spatial Queries

It solved the problem of finding top-k sites based on their influence on feature points

.

Web Based Spatial Ranking System

50

As an example, Fig. 3a shows a set of sites (white points), a set of features (black points weights), such

that each line links a feature point to its nearest site. The influence of a site PI is defined by the sum of weights

of feature points having pi as their closest site. For instance, the score of PI is 0.9+0.5=1.4. Similarly, the scores
of P2 and P3 are 1.5 and 1.2, respectively. Hence, p2 is returned as the top-l influential site.

Related to top-k influential sites query are the optimal location queries studied in [8] and [9]. The goal

of the top k is to find the location in space (not chosen from a specific set of sites) that minimizes an objective

function.

Fig. 3b and 3c shows, feature points and existing sites are shown as black and gray points, respectively.

Assume that all feature points have the same quality. The maximum influence optimal location query [8] finds

the location (to insert to the existing set of sites) with the maximum influence, whereas the minimum distance

optimal location query [9] searches for the location that minimizes the average distance from each feature point

to its nearest site. The optimal locations for both queries are marked as white points in Fig. 3b and 3 c,

respectively. The techniques proposed in [8] and [9] are specific to the particular query types described above

and cannot be extended for our top-k spatial preference queries. Also, they deal with a single feature data set
whereas our queries consider multiple feature data sets. Recently, novel spatial queries and joins [10] and [11],

have been proposed for various spatial decision support problems. However, they do not utilize non-spatial

qualities of facilities to define the score of a location. Finally, [12] and [13] studied the evaluation of textual

location-based queries on spatial objects.

III. SPATIAL PREFERENCE QUERIES

A. Definitions and Index Structures

Let Fc be a feature data set, in which each feature object S Fc is associated with a quality w(s) and a

spatial point. It assume that the domain of w(s) is the interval [0,1]. As an example, the quality w(s) of a

restaurant s can be obtained from a ratings provider. It proceeds to elaborate the aggregate function and the

component score function. Typical examples of the aggregate function AGG are: SUM, MIN, and MAX.

This first focus on the case where AGG is SUM. This will discuss the generic scenario where AGG is
an arbitrary monotone aggregate function.

In this paper, It assume that the object data set . . D is indexed by an R-tree and each feature data set J e

is indexed by an MAX a R-tree, where each non-leaf entry augments the maximum quality (of features) in its

sub-tree. Nevertheless, this solution is directly applicable to data sets that are indexed by other hierarchical

spatial indexes (e.g., point quad-trees).

The rationale of indexing different feature data sets by separate a R-trees is that:

 A user queries for only few features (e.g., restaurants and cafes) out of all possible features (e.g.,

restaurants, cafes, hospital, market, etc.).

 Different users may consider different subsets of features.

Branch-and-Bound algorithm can significantly reduce the number of objects to be examined. The key idea

is to compute, for non-leaf entries e in the object tree D, an upper bound T(e) of the score T(e) for any point p
in the subtree of e. If T(e) then we need not access the subtree of e, thus we can save numerous score

computations.

This a pseudo code of BB algorithm, based on this idea. BB is called with N being the root node of D.

If N is a non-leaf node, Lines 3 -5 compute the scores T(e) for non-leaf entries e concurrently. Recall that T(e) is

an upper bound score for any point in the subtree of e. The techniques for computing T(e) will be discussed

shortly with the component scores Te(e) known so far, it can derive T(e), an upper bound of T(e). If T(e) ,

then the subtree of e cannot contain better results than those in Wk and it is removed from V . In order to obtain

points with high scores early, we sort the entries in descending order of T(e) before invoking the above

procedure recursively on the child nodes pointed by the entries in V . If N is a leaf node, we compute the scores

for all points of N concurrently and then update the set Wk of the top-k results. Since both Wk and Y are global

variables, their values are updated during recursive call of BB.

Web Based Spatial Ranking System

51

B.1 Upper Bound Score Computation

Upper Bound Score remains to clarify how the (upper bound) scores Tc(e) of non-leaf entries (within

the same node N) can be computed concurrently . The goal is to compute these upper bound scores such that

The bounds are computed with low I/O cost

 The bounds are reasonably tight, in order to facilitate effective pruning.

It utilizes only level-l entries (i.e., lowest level non leaf entries) in J e for deriving upper bound scores because:

1. There are much fewer level-l entries than leaf entries (i.e., points)
2. High-level entries in J e cannot provide tight bounds.

It also verifies the effectiveness and the cost of using level- 1 entries for upper bound score

computation. Algorithm 2 can be modified for the above upper bound computation task (where input V

corresponds to a set of non-leaf entries), after changing Line 2 to check whether child nodes of N are above the

leaf-level. The following example illustrates how upper bound range scores are derived. In Fig. 4a, v I and V2

are non-leaf entries in the object tree D and the others are level-l entries in the feature tree Fc' For the entry V1,

we first define its Minkowski region (i.e., gray region around v I), the area whose mindist from V1 is within E.

Observe that only entries e intersecting the Minkowski region of V1 can contribute to the scope of some point in

V1. Thus, the upper bound score Te(v1) is simply the maximum quality of entries e1,.e8 ,e6, e7 i.e., 0.9.

Similarly, Tc(v2) is computed as the maximum quality of entries e2 , e3 e4, e8 i.e., 0.7. Assuming that V1 and

V2 are entries in the same tree node of D, their upper bounds are computed concurrently to reduce I/O cost.

B. Optimized Branch-and-Bound Algorithm

Computing the scores of objects efficiently from the feature trees F1 , , F2 , , Fm. The set V

contains objects whose scores need to be computed. Here, E refers to the distance threshold of the range score,

and Y represents the best score found s far. For each feature tree Fe, we employ a max-heap H c to traverse the

entries of Fc in descending order of their quality values. The root of Fc is first inserted into H c. The variable

 maintains the upper bound quality of entries in the tree that will be visited. We then initialize each

component score Tc(P) of every object p E V to O. The variable keeps track of the ID of the current feature

tree being processed. The loop is used to compute the scores for the points in the set.

C. Optimized Branch-and-Bound Algorithm
Computing the scores of objects efficiently from the feature trees F1 , , F2 , , Fm .The set V

contains objects whose scores need to be computed. Here, E refers to the distance threshold of the range score,
and y represents the best score founds far. For each feature tree Fe, we employ a max-heap H c to traverse the

entries of J e in descending order of their quality values. The root of Fc is first inserted into H c. The variable

 maintains the upper bound quality of entries in the tree that will be visited. We then initialize each

component score Tc(P) of every object p E V to O. The variable keeps track of the ID of the current feature

tree being processed. The loop is used to compute the scores for the points in the set.

Web Based Spatial Ranking System

52

And then deheap an entry e from the current heap Hα . The property of the max-heap guarantees that the quality

value of any future entry deheaped from Hα is at most w(e). Thus, the bound µc is updated to w(e). It prune the

entry e if its distance from each object point pα V is larger than α. In case e is not pruned, it compute the tight
upper bound score T*(p) for each pαV ; the object p is removed from V if T*(p) <= y.

Next, it access the child node pointed to bye, and examine each entry e ' in the node. A nonleaf entry e'

is inserted into the heap Ha if its minimum distance from some p α V is within α whereas a leaf entry e' is used

to update the component score Tα(P) for any p α V within distance E and it apply the round-robin strategy to

find the next a value such that the heap Hα is not empty.

D. Influence Score

The influence score function that combines both the qualities and relative locations of feature points.

And then it presents the adaptations of our solutions for the influence score function. Finally, it discuss how our

solutions can be used for other types of influence score functions. The range score has a drawback that the

parameter E is not easy to set. The range score has a drawback that the parameter α is not easy to set. Consider,
for instance, the example of the range score Tmg(). A score function such that it is not too sensitive to the range

parameter α.The user usually prefer a high-quality restaurant rather than a large number of low-quality

restaurants.

IV. EXPERIMENTS
The efficiency of the proposed algorithms using real and synthetic data sets is compared. Each data set

is indexed by an R-tree with 4 K bytes page size. It used an LRU memory buffer whose default size is set to 0,5
percent of the sum of tree sizes (for the object and feature trees used). These algorithms were implemented in

java and experiments were run on a Pentium D 2.8 GHz PC with 1 GB of RAM. In all experiments, it measure

both the I/ O cost (in number of page faults) and the total execution time (in seconds) of this algorithms.

A. Experimental Settings

It used both real and synthetic data for the experiments. For each synthetic data set, the coordinates of

points are random values uniformly and independently generated for different dimensions. By default, an object

data set contains 200K points and a feature data set contains l00K points. The point coordinates of all data sets

are normalized to the 2D space [0,10000f]2 For a feature data set :Fc, we generated qualities for its points such

that they simulate a real-world scenario: facilities close to (far from) a town centre often have high (low) quality.

For this, a single anchor point s. is selected such that its neighborhood region contains high number of points.

Let distmin(distmax) be the minimum (maximum) distance of a point in :Fc from the anchor s.*.

B. Performance on Queries with Range Scores

It empirically justifies the choice of using level-l entries of feature trees Fc for the upper bound score

computation routine in the BB algorithm. Table 1 shows the decomposition of node accesses over the tree D and

the trees :Fc, and the statistics of upper bound score computation. Each accessed non-leaf node of D invokes a

call of the upper bound score computation routine.

When level-0 entries of :Fc are used, each upper bound computation call incurs a high number (617.5) of node

accesses (of :Fc). On the other hand, using level-2 entries for upper bound computation leads to very loose

bounds, making it difficult to prune the leaf nodes of D. Observe that the total cost is minimized when level-l

entries (of :Fc) are used. In that case, the node accesses per upper bound computation call is low (15), and yet

the obtained bounds are tight enough for pruning most leaf nodes of D. The incremental computation technique
derives a tight upper bound score (of each point) for the MIN function, a partially tight bound for SUM, and a

loose bound for MAX . This explains the performance across different aggregate functions. However, the cost of

the other methods is mainly influenced by the effectiveness of pruning. BB employs an effective technique to

prune unqualified non-leaf entries in the object tree so it outperforms group probing.

Web Based Spatial Ranking System

53

C Results on Real Data

This experiment on real object and feature data sets in order to demonstrate the application of top-k

spatial preference queries. It obtained three real spatial data sets from a travel portal website,
http://www.allstays.coml. Locations in these data sets correspond to (longitude and latitude) coordinates in US.

This cleaned the data sets by discarding records without longitude and latitude. Each remaining location is

normalized to a point in the 2D space [0, l0,000]2 One data set is used as the object data set and the other two are

used as feature data sets. The object data set D contains 11,399 camping locations. The feature data set :F1

,contains 3 0,921 hotel records, each with a room price (quality) and a location. The feature data set: F2 has 3

,848 records of Wal-Mart stores, each with a gasoline vailability (quality) and a location. The domain of each

quality attribute (e.g., room price and gasoline availability) is normalized to the unit interval [0, 1]. Intuitively, a

camping location is considered as good if it is close to a Wal-Mart store with high gasoline availability (i.e.,

convenient supply) and a hotel with high room price (which indirectly reflects the quality of nearby outdoor

environment) this experiment, it can use the default parameter setting and study how the number of node

accesses of BB is affected by the level of :Fc used.

V. CONCLUSIONS

The top-k spatial preference queries provide a novel type of ranking for spatial objects based on

qualities of features in their neighborhood. The neighborhood of an object p is captured by the scoring function:

• The range score restricts the neighborhood to a crisp region centered at p,

• The influence score relaxes the neighborhood to the whole space and assigns higher weights to locations closer

to p.

It presented above algorithms for processing top-k spatial preference queries. The algorithm BB derives

upper bound scores for non-leaf entries in the object tree, and prunes those that cannot lead to better results. The
algorithm BB* is a variant of BB that utilizes an optimized method for computing the scores of objects (and

upper bound scores of non leaf entries).

The algorithm performs a multiway join on feature trees to obtain qualified combinations of feature points and

then search for their relevant objects in the object tree. Based on experimental findings, BB* is scalable to large

data sets and it is the most robust algorithm with respect to various parameters. However, BB* is the best

algorithm in cases where the number m of feature data sets is low and each feature data set is small.

Based on experimental findings, BB* is scalable to large data sets and it is the most robust algorithm with

respect to various parameters. However, BB* is the best algorithm in cases where the number m of feature data

sets is low and each feature data set is small.

REFERENCES
[1] M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, "Top-k Spatia Preference Queries," Proc. IEEE Int"l Conf. Data Eng. (rCDE), 2007.

[2] N. Bruno, L. Gravano, and A. Marian, "Evaluating Top-k Queries over Web-Accessible Databases," Proc. IEEE Int"l Conf. Data

Eng. (lCDE), 2002.

[3] Guttman, "R- Trees: A Dynamic Index Structure for Spatial Searching," Proc. ACM IGMOD, 1984.

[4] G.R. Hjaltason and H. Samet, "Distance Browsing in Spatial Databases," ACM Trans. Database Systems, vol. 24, no. 2, pp. 265

318,1999.

[5] R. Weber, H.-J. Schek, and S. Blott, "A Quantitative Analysis and Performance Study for Similarity-Search Methods in

HighDimensional Spaces," Proc. Int"l Conf. Very Large Data Bases (VLDB), 1998.

