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ABSTRACT: In this paper we consider the problem of finding the number of zeros of a polynomial in a given 

circle when the coefficients of the polynomial or their real or imaginary  parts are restricted to certain 

conditions. Our results  in this direction generalize some known results in the theory of the distribution of zeros 

of polynomials.                                                       
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I. INTRODUCTION AND STATEMENT OF RESULTS 
Regarding the number of  zeros of a polynomial in a given circle, Q. G. Mohammad [6] proved the 

following result: 
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K. K. Dewan [2] generalized Theorem A to polynomials with complex coefficients and proved the 

following results: 
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Theorem C: Let 
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C. M. Upadhye [3] found bounds for the number of zeros of P(z) in Theorems B and C with less 

restrictive conditions on  the coefficients  , which were further improved by M. H. Gulzar [5] by proving the 

following resuls: 

Theorem D: Let 
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Theorem E: Let 
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In this paper we find bounds for the number of zeros of a polynomial in a circle of any positive radius 

of which the above results are easy consequences. More precisely we prove the following results: 
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Remark 1: Taking  


1
c and R=1, Theorem 1 reduces to Theorem E . 

If the coefficients ja  are real i.e. jj  ,0 , we get the following result from Theorem 1: 

Corollary 1: Let 
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Applying Theorem 1 to the polynomial –iP(z), we get the following result: 

Theorem 2: Let 
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Theorem 3: Let 
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Remark 2: Taking 


1
c  ,R=1, Theorem 3 reduces to Theorem D . 

 

II.   LEMMAS 

For  the proofs of the above results we need the following results: 

 

Lemma 1: If f(z) is analytic in Rz  ,but not identically zero, f(0)  0 and  
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  Lemma 1 is the famous Jensen’s theorem (see page 208 of [1]). 
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Lemma 2 is a simple deduction from Lemma 1. 

Lemma 3: Let 
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Lemma 3 is due to Govil and Rahman [4]. 

 

III.  PROOFS OF THEOREMS 

Proof of Theorem 1: Consider the polynomial 

     F(z) =(1-z)P(z)   
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For Rz  , we have by using the hypothesis 

     






 
1

2

110

1 )]()1[()(
n

j

j

jjnnn

nn

n RkkRaRazF   

                    
j

n

j

jj RR 



1

1001 ])1([  .  

Therefore  

   






 
1

1

11

1 )()()1([)(
n

j

jjnnnnn

n kkRzF   

                    ])()1()(
1

100100 



n

j

jj   

              ]22)()([
1

000

1 


 
n

j

jnn

n kR                          

                                                                                       for 1R   

and 

       )(zF  ]2)()([
1

00000 



n

j

jnnkRa                                                                                                                                  

                                                                                        for 1R  . 

Hence , by Lemma 2, the number of zeros of F(z) and therefore  P(z) in 
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That proves Theorem 1.  

  

 Proof of Theorem 2: Consider the polynomial 

     F(z) =(1-z)P(z)   
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Hence , by Lemma 2, it follows that the number of zeros of F(z) and therefore P(z) in 
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That proves Theorem 3.  
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