On The Zeros of Analytic Functions

M. H. Gulzar

P. G. Department of Mathematics University of Kashmir, Srinagar 190006

Abstract : In this paper we consider a certain class of analytic functions whose coefficients are restricted to certain conditions, and find some interesting zero-free regions for them. Our results generalize a number of already known results in this direction.

Mathematics Subject Classification: 30C10, 30C15

Key-words and phrases: Analytic Function, Coefficients, Zeros

INTRODUCTION AND STATEMENT OF RESULTS I.

Regarding the zeros of a class of analytic functions, whose coefficients are restricted to certain conditions, W. M. Shah and A. Liman [4] have proved the following results:

Theorem A: Let
$$f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$$
 be analytic in $|z| < t$. If for some $k \ge 1$,

$$k|a_0| \ge t|a_1| \ge t^2|a_2| \ge \dots,$$

and for some β ,

$$\left| \arg a_{j} - \beta \right| \le \alpha \le \frac{\pi}{2}, \ j = 0, 1, 2, \dots,$$

then f(z) does not vanish in

$$\left| z - \frac{(k-1)t}{M^2 - (k-1)^2} \right| \le \frac{Mt}{M^2 - (k-1)^2},$$
where

where

$$M = k(\cos \alpha + \sin \alpha) + 2 \frac{\sin \alpha}{|a_0|} \sum_{j=1}^{\infty} |a_j| t^j.$$

Theorem B: Let $f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$ be analytic in $|z| \le t$. If for some $k \ge 1$ and $\lambda > 0$,

 $k|a_0| \le t|a_1| \le t^2 a_2 \le \dots \le t^k |a_k| \ge t^{k+1} \ge \dots,$ and for some β ,

$$\left|\arg a_{j} - \beta\right| \le \alpha \le \frac{\pi}{2}, \ j = 0, 1, 2, \dots,$$

then f(z) does not vanish in

$$\left| z - \frac{(k-1)t}{M^{*2} - (k-1)^2} \right| \le \frac{M^* t}{M^{*2} - (k-1)^2}$$

where

$$M^{*} = \left(\frac{2|a_{k}|}{|a_{0}|}t^{k} - k\right)\cos\alpha + k\sin\alpha + 2\frac{\sin\alpha}{|a_{0}|}\sum_{j=1}^{\infty}|a_{j}|t^{j}.$$

The aim of this paper is to generalize the above - mentioned results. In fact, we are going to prove the following results:

Theorem 1: Let $f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$ be analytic for $|z| \le t$. If for some $\rho \ge 0$, $\rho + |a_0| \ge t |a_1| \ge t^2 |a_2| \ge \dots,$ and for some real β and α ,

$$\left| \arg a_j - \beta \right| \le \alpha \le \frac{\pi}{2}, j = 0, 1, 2, \dots,$$

then f(z) does not vanish in

$$\left| z - \frac{\rho |a_0| t}{|a_0|^2 M^2 - \rho^2} \right| < \frac{Mt |a_0|^2}{|a_0|^2 M^2 - \rho^2},$$

where

$$M = \left(\frac{\rho + |a_0|}{|a_0|}\right)\left(\cos\alpha + \sin\alpha\right) + 2\frac{\sin\alpha}{|a_0|}\sum_{j=1}^{\infty} |a_j|t^j.$$

Remark1: Taking $\rho = (k-1)|a_0|$, $k \ge 1$, Theorem 1 reduces to Theorem A.

Also taking $\alpha = \beta = 0$, we get the following result, proved earlier by Aziz and Shah [2]:

Corollary 1: Let
$$f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$$
 be analytic for $|z| \le t$ such that for some $k \ge 1$,

 $ka_0 \ge ta_1 \ge t^2 a_2 \ge \dots$. Then f(z) does not vanish in

$$\left|z - \frac{(k-1)t}{2k-1}\right| < \frac{kt}{2k-1}.$$

Taking $\alpha = \beta = 0$ and $\rho = 0$, we get the following result proved earlier by Aziz and Mohammad [1]:

Corollary 2: Let
$$f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$$
 be analytic for $|z| \le t$ such that $a_j > 0$ and

 $a_{j-1} - ta_j \ge 0, j = 1, 2, 3, \dots$ Then f(z) does not vanish in |z| < t.

Theorem 2: Let
$$f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$$
 be analytic for $|z| \le t$. If for some $\rho \ge 0$, $\lambda > 0$,

$$\begin{split} & \left| \rho + a_0 \right| \leq t \left| a_1 \right| \leq t^2 \left| a_2 \right| \leq \dots \leq t^{\lambda} \left| a_{\lambda} \right| \geq t^{\lambda + 1} \left| a_{\lambda + 1} \right| \geq \dots \dots, \\ & \text{and for some real } \beta \text{ and } \alpha \text{ ,} \end{split}$$

$$\left| \arg a_{j} - \beta \right| \le \alpha \le \frac{\pi}{2}, \ j = 0, 1, 2, \dots,$$

then f(z) does not vanish in

$$\left|z - \frac{\rho |a_0| t}{|a_0|^2 M^{*2} - \rho^2}\right| < \frac{M^* t |a_0|^2}{|a_0|^2 M^{*2} - \rho^2},$$

where

$$M^* = \left[\left(2 \left| \frac{a\lambda}{a_0} \right| t^{\lambda} - \left| 1 + \frac{\rho}{a_0} \right| \right) \cos \alpha + \left| 1 + \frac{\rho}{a_0} \right| \sin \alpha + \frac{2 \sin \alpha}{|a_0|} \sum_{j=1}^{\infty} \left| a_j \right| t^j \right]$$

Remark2: Taking $\rho = (k-1)|a_0|$, $k \ge 1$, Theorem 2 reduces to Theorem B.

The result of Aziz and Mohammad (Theorem 6 of [1]) follows from Theorem 2 by taking $\rho = 0$.

II. LEMMA

For the proofs of the above theorems, we need the following lemma, which is due to Govil and Rahman [3]:

Lemma : If
$$|\arg a_j - \beta| \le \alpha \le \frac{\pi}{2}$$
 and for some t>0, $|ta_j| \ge |a_{j-1}|, j = 0, 1, ..., n$, then $|ta_j - a_{j-1}| \le [(|ta_j| - |a_{j-1}|) \cos \alpha + (|ta_j| + |a_{j-1}|) \sin \alpha].$

III. Proofs Of The Theorems

Proof of Theorem 1: Consider the function

$$F(z) = (z - t)f(z)$$

$$= (z - t)(a_0 + a_1z + a_2z^2 +)$$

$$= -ta_0 + (a_0 - ta_1)z + (a_1 - ta_2)z^2 +$$

$$= -ta_0 - \rho z + (\rho + a_0 - ta_1)z + (a_1 - ta_2)z^2 +$$

$$= -ta_0 - \rho z + G(z),$$
where

$$G(z) = (\rho + a_0 - ta_1)z + \sum_{j=2}^{\infty} (a_{j-1} - ta_j)z^j.$$

Since $|\arg a_j - \beta| \le \alpha \le \frac{\pi}{2}, j = 0, 1, 2, ...,$ by using the lemma and the hypothesis, we have for |z| = t, $|G(z)| \le t[\{(\rho + |a_0|) - |ta_1|\} \cos \alpha + \{(\rho + |a_0|) + |ta_1|\} \sin \alpha + t\{(|a_1| - |ta_2|) \cos \alpha + (|a_1| + |ta_2|) \sin \alpha\} +]$ $\le t|a_0|[(1 + \frac{\rho}{|a_0|})(\cos \alpha + \sin \alpha) + \frac{2\sin \alpha}{|a_0|} \sum_{j=1}^{\infty} |a_j|t^j]$ $= t|a_0|M.$

Since G(z) is analytic for $|z| \le t$, G(0)=0, it follows by Schwarz's lemma that $|G(z)| \le t |a_0|M|z|$ for $|z| \le t$.

$$|G(z)| \le t |a_0| M |z| \quad \text{for } |z| \le$$

Hence it follows that
$$|F(z)| \ge |ta_0 + \rho z| - |G(z)|$$
$$\ge |a_0| \left[\left| \frac{\rho z}{a_0} + t \right| - t |z| M \right]$$
$$> 0$$
if
$$\left| \frac{\rho z}{a_0} + t \right| > t |z| M$$
i.e. if
$$t |z| M < \left| \frac{\rho z}{a_0} + t \right|.$$

Since the region defined by

$$t\big|z\big|M < \bigg|\frac{\rho z}{a_0} + t$$

is precisely the disk

$$\left| z - \frac{\rho |a_0| t}{|a_0|^2 M^2 - \rho^2} \right| < \frac{Mt}{|a_0|^2 M^2 - \rho^2}$$

we conclude that F(z) and therefore f(z) does not vanish in the disk

$$\left| z - \frac{\rho |a_0| t}{|a_0|^2 M^2 - \rho^2} \right| < \frac{Mt}{|a_0|^2 M^2 - \rho^2}$$

That completes the proof of Theorem 1. **Proof of Theorem 2:** Consider the function

$$F(z) = (z - t)f(z)$$

= $(z - t)(a_0 + a_1z + a_2z^2 +)$
= $-ta_0 + (a_0 - ta_1)z + (a_1 - ta_2)z^2 + + (a_{n-1} - ta_n)z^n +$
= $-ta_0 - \rho z + (\rho + a_0 - ta_1)z + (a_1 - ta_2)z^2 + + (a_k - ta_{k+1})z^{k+1}$
+ $.... + (a_{n-1} - a_n)z^n +$
= $-ta_0 - \rho z + G(z)$.

Since $|\arg a_{j} - \beta| \le \alpha \le \frac{\pi}{2}, j = 0,1,2,...,$ by using the lemma and the hypothesis, we have for |z| = t, $|G(z)| = |(\rho + a_{0} - ta_{1})z + (a_{1} - ta_{2})z^{2} + ..., + (a_{\lambda} - ta_{\lambda+1})z^{\lambda+1} + ..., + (a_{n-1} - a_{n})z^{n+1} + ..., |$ $\le t[(|ta_{1}| - |\rho + a_{0}|)\cos \alpha + (|ta_{1}| + |\rho + a_{0}|)\sin \alpha + ..., + (|t^{2}a_{2}| - |ta_{1}|)\cos \alpha + (|t^{2}a_{2}| + |ta_{1}|)\sin \alpha + ..., + (|t^{2}a_{\lambda}| - |t^{\lambda-1}a_{\lambda-1}|)\cos \alpha + (|t^{\lambda}a_{\lambda}| + |t^{\lambda-1}a_{\lambda-1}|)\sin \alpha + ..., + (|t^{\lambda}a_{\lambda}| - |t^{\lambda-1}a_{\lambda-1}|)\cos \alpha + (|t^{\lambda}a_{\lambda}| + |t^{\lambda+1}a_{\lambda+1}|)\sin \alpha + ..., + (|t^{n-1}a_{n-1}| - |t^{n}a_{n}|)\cos \alpha + (|t^{\lambda}a_{\lambda}| + |t^{\lambda-1}a_{\lambda-1}|)\sin \alpha + ..., + (|t^{n-1}a_{n-1}| - |t^{n}a_{n}|)\cos \alpha + (|t^{n-1}a_{n-1}| + |t^{n}a_{n}|)\sin \alpha + ..., + (|t^{n-1}a_{n-1}| - |t^{n}a_{n}|)\cos \alpha + (|t^{n-1}a_{n-1}| + |t^{n}a_{n}|)\sin \alpha + |t^{n}a_{n}| + ..., + (|t^{n-1}a_{n-1}| - |t^{n}a_{n}|)\cos \alpha + (|t^{n-1}a_{n-1}| + |t^{n}a_{n}|)\sin \alpha + ..., + (|t^{n-1}a_{n-1}| - |t^{n}a_{n}|)\cos \alpha + (|t^{n-1}a_{n-1}| + |t^{n}a_{n}|)\sin \alpha + |t^{n}a_{n}| + ..., + (|t^{n-1}a_{n-1}| - |t^{n}a_{n}|)\cos \alpha + |1 + \frac{\rho}{a_{0}}|\sin \alpha + \frac{2\sin \alpha}{|a_{0}|}\sum_{j=1}^{\infty} |a_{j}|t^{j}|^{j}$] $= t|a_{0}|\left[(2|\frac{a\lambda}{a_{0}}|t^{\lambda} - |1 + \frac{\rho}{a_{0}}|)\cos \alpha + |1 + \frac{\rho}{a_{0}}|\sin \alpha + \frac{2\sin \alpha}{|a_{0}|}\sum_{j=1}^{\infty} |a_{j}|t^{j}|^{j}\right].$ where $M^{*} = \left[(2|\frac{a\lambda}{a_{0}}|t^{\lambda} - |1 + \frac{\rho}{a_{0}}|)\cos \alpha + |1 + \frac{\rho}{a_{0}}|\sin \alpha + \frac{2\sin \alpha}{|a_{0}|}\sum_{j=1}^{\infty} |a_{j}|t^{j}|^{j}\right].$

Since G(z) is analytic for $|z| \le t$, G(0)=0, it follows by Schwarz's lemma that $|G(z)| \le t |a_0| M^* |z|$ for $|z| \le t$.

Hence it follows that

$$|F(z)| \ge |ta_0 + \rho z| - |G(z)|$$

$$\ge |a_0| \left[\frac{\rho z}{a_0} + t \right] - t |z| M^*]$$

$$> 0$$

if
$$\left|\frac{\rho z}{a_0} + t\right| > t |z| M^*$$

i.e. if

$$t|z|M^* < \left|\frac{\rho z}{a_0} + t\right|.$$

Since the region defined by

$$t|z|M^* < \left|\frac{\rho z}{a_0} + t\right|$$

is precisely the disk

$$\left| z - \frac{\rho |a_0| t}{|a_0|^2 M^{*2} - \rho^2} \right| < \frac{M^* t}{|a_0|^2 M^{*2} - \rho^2}$$

we conclude that F(z) and therefore f(z) does not vanish in the disk

$$\left|z - \frac{\rho |a_0| t}{|a_0|^2 M^{*2} - \rho^2}\right| < \frac{M^* t}{|a_0|^2 M^{*2} - \rho^2}.$$

That completes the proof of Theorem 2.

REFERENCES

- A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. ppl.75(1980), 495-502.
- [2] A. Aziz and W. M. Shah, On the location of zeros of polynomials and related analytic functions, onlinear Studies 6 (1999), 91-101.
- [3] N. K. Govil and Q.I. Rahman, On the Enestrom-Kakeya Theorem II, Tohoku Math.J. 20 (1968), 126-136.
- [4] W. M. Shah and A. Liman, On Enestrom-Kakeya Theorem and related analytic functions, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 117, No.3, August 2007359-370.