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I. INTRODUCTION AND STATEMENT OF RESULTS 
Regarding the zeros of a class of analytic functions , whose coefficients are restricted to certain 

conditions,  W. M. Shah and A. Liman  [4] have proved the following results: 
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Theorem B: Let  0)(
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The aim of this paper is to generalize the above - mentioned results.  In fact , we are going to prove the 

following results: 
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Theorem 1: Let 0)(
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Remark1: Taking  0)1( ak  , 1k , Theorem 1 reduces to Theorem A. 

Also taking 0  , we get the following result, proved earlier by Aziz and Shah [2] : 

Corollary 1: Let 0)(
0
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Taking  0  and 0 , we get the following result proved earlier by Aziz and Mohammad [1] : 
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Remark2: Taking  0)1( ak  , 1k , Theorem 2 reduces to Theorem B. 

The result of Aziz and Mohammad (Theorem 6 of [1]) follows from Theorem 2 by taking 0 . 
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II. LEMMA 
For the proofs of the above theorems , we need the following lemma, which is due to Govil and 

Rahman [3]: 
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III. Proofs Of The Theorems 
Proof of Theorem 1: Consider the function 
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Since G(z) is analytic for tz  , G(0)=0, it follows by Schwarz’s lemma that 
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we conclude that F(z) and therefore f(z) does not vanish in the disk 
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That completes the proof of Theorem 1. 

Proof of Theorem 2: Consider the function 
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Since G(z) is analytic for tz  , G(0)=0, it follows by Schwarz’s lemma that 
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That completes the proof of Theorem 2. 
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