Mathematical Model For Optimisation Of Modulus Of Rupture Of Concrete Using Osadebe's Regression Theory

${ }^{1,}$ C.E. Okere (Dr.), ${ }^{2,}$ D.O. Onwuka(Dr.), ${ }^{3,}$ N.N. Osadebe (Prof)
${ }^{1,}$ Civil Engineering, Federal University of Technology, Owerri, Imo State, Nigeria.
${ }^{2,}$ Civil Engineering, Federal University of Technology, Owerri, Nigeria.
${ }^{3,}$ Civil Engineering, University of Nigeria, Nsukka.

Abstract

The modulus of rupture (MOR) of concrete is a function of the proportions of the constituent materials, namely, cement, water, fine and coarse aggregates. The conventional methods used to determine the mix proportions that will yield a desired modulus of rupture, are laborious, time consuming and expensive. In this paper, a mathematical method based on Osadebe's concrete optimisation theory is formulated for the optimisation of the modulus of rupture of concrete. The model can prescribe all the mixes that will produce a desired modulus of rupture of concrete. It can also predict the modulus of rupture of concrete if the mix proportions are specified .The adequacy of the mathematical model is tested using statistical tools.

Keywords: model; modulus of rupture; Osadebe's theory; optimisation; mix proportions.

I. Introduction

Concrete is a construction material in which strength is very important. The strength is of such utmost importance that it is used as a yardstick for judging other concrete properties such as permeability, durability, fire and abrasion resistances. The strength is usually given in form of compressive strength and flexural strength. The flexural strength is the property of a solid that indicates its ability to resist failure in bending [1] and the modulus of rupture (MOR) of concrete as defined by International Concrete Repair Institute is a measure of the ultimate load bearing capacity of a concrete beam tested in flexure [2].Various methods have been used to study and/or determine the modulus of rupture of concrete [3-5]. All these methods are based on the conventional approach of selecting arbitrary mix proportions, subjecting concrete samples to laboratory and then adjusting the mix proportions in subsequent tests. Apparently, these methods are time consuming and expensive. In this paper, a mathematical model based on Osadebe's concrete optimisation theory, is formulated for the optimization of the modulus of rupture of concrete.

II. Materials

The materials used in the production of the prototype concrete beams are cement, fine aggregates coarse aggregates and water. Eagle cement brand of Ordinary Portland cement with properties conforming to BS 12 was used in the preparation of the concrete beam specimens [6]. The fine aggregates were fine and medium graded river sand of zone 3 sourced from Otamiri River in Imo State. The coarse aggregates were irregular shaped medium-graded coarse aggregates having a maximum size of 20 mm and conforming to BS 882 [7]. They were free from clay lumps and organic materials. Potable water conforming to the specification of EN 1008: was used in the production of the prototype concrete beam specimens [8].

III. Methods

Two methods, namely analytical and experimental methods were used in this work.

3.1 Analytical methods

Here, optimization method is used in formulating a mathematical model for predicting the modulus of rupture of concrete. The model is based on Osadebe's regression theory. A simplex lattice is described as a structural representation of lines joining the atoms of a mixture. The atoms are constituent components of the mixture. For a normal concrete mixture, the constituent elements are water, cement, fine and coarse aggregates and so it gives a simplex of a mixture of four components. Hence the simplex lattice of this four-component mixture is a three-dimensional solid equilateral tetrahedron. Mixture components are subject to the constraint that the sum of all the components must be equal to one [9]. In order words:

$$
\begin{equation*}
X_{1}+X_{2}+X_{3}+\ldots \ldots .+X_{q}=1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{q} X_{i}=1 \tag{2}
\end{equation*}
$$

where q is the number of components of a mixture X_{i} is the proportion of the ith component in the mixture.
It is impossible to use the normal mix ratios such as 1:2:4 or 1:3:6 at a given water/cement ratio because of the requirement of the simplex that sum of the components must be one. Hence it is necessary to carry out a transformation from actual to pseudo components. The actual components represent the proportion of the ingredients while the pseudo components represent the proportion of the components of the ith component in the mixture i.e. $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}$. Considering the four- component mixture tetrahedron simplex lattice, let the vertices of this tetrahedron (principal coordinates) be described by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$.
The arbitrary mix proportions prescribed for the vertices of the tetrahedron shown in (Figure 1),

$$
\begin{gathered}
\mathrm{A}_{1}(0.55: 1: 2: 4) \\
\mathrm{A}_{2}(0.50: 1: 2.5: 6) \\
\mathrm{A}_{3}(0.45: 1: 3: 5.5) \\
\mathrm{A}_{4}(0.6: 1: 1.5: 3.5)
\end{gathered}
$$

are based on past experiences and literature.
Let X represent pseudo components and Z , actual components. For component transformation we use the following equations:

$$
\begin{align*}
& \mathrm{X}=\mathrm{BZ} \tag{3}\\
& \mathrm{Z}=\mathrm{AX} \tag{4}
\end{align*}
$$

where $\mathrm{A}=$ matrix whose elements are from the arbitrary mix proportions chosen when 'equation (4)' is opened and solved mathematically.
$\mathrm{B}=$ the inverse of matrix A .
$\mathrm{X}=$ matrix of pseudo components. This is obtained from (Figure 2).
Expanding and using 'equations (3) and (4)', the actual components Z were determined and presented in (Table 1) [9].

3.2 Formulation of the optimisation model

Osadebe's regression model is used in the formulation of the mathematical model for the optimization of the modulus of rupture of concrete. Osadebe assumed that the response function, $\mathrm{F}(\mathrm{z})$ given by 'equation (1)' is continuous and differentiable with respect to its predictors, Zi [10].

$$
\begin{gather*}
\mathrm{F}(\mathrm{z})=\mathrm{F}\left(\mathrm{z}^{(0)}\right)+\sum\left[\partial \mathrm{F}\left(\mathrm{z}^{(0)}\right) / \partial \mathrm{z}_{\mathrm{i}}\right]\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{i}}^{(0)}\right)+1 / 2!\sum \sum\left[\partial^{2} \mathrm{~F}\left(\mathrm{z}^{(0)}\right) / \partial \mathrm{z}_{\mathrm{i}} \partial \mathrm{z}_{\mathrm{j}}\right]\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{i}}^{(0)}\right) \\
\quad\left(\mathrm{z}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}{ }^{(0)}\right)+1 / 2!/ \sum \sum\left[\partial^{2} \mathrm{~F}\left(\mathrm{z}^{(0)}\right) / \partial \mathrm{z}_{\mathrm{i}}^{2}\right]\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{i}}^{(0)}\right)^{2}+\ldots \ldots . \tag{5}
\end{gather*}
$$

where $1 \leq i \leq 4,1 \leq i \leq 4,1 \leq j \leq 4$, and $1 \leq i \leq 4$ respectively.
By making use of Taylor's series, the response function could be expanded in the neighbourhood of a chosen point:

$$
\begin{equation*}
\mathrm{Z}^{(0)}=\mathrm{Z}_{1}^{(0)}, \mathrm{Z}_{2}^{(0)}, \mathrm{Z}_{3}^{(0)}, \mathrm{Z}_{4}^{(0)}, \mathrm{Z}_{5}^{(0)} \tag{6}
\end{equation*}
$$

Without loss of generality of the formulation, the point $z^{(0)}$ will be chosen as the origin for convenience sake. It is worthy of note here that the predictor, z_{i} is not the actual portion of the mixture component rather it is the ratio of the actual portions to the quantity of concrete. For convenience sake, let z_{i} be the fractional portion and s_{i} be the actual portions of the mixture components.
If the total quantity of concrete is designated s, then

$$
\begin{equation*}
\sum \mathrm{s}_{\mathrm{i}}=\mathrm{s} \tag{7}
\end{equation*}
$$

For concrete of four components, $1 \leq i \leq 4$ and so 'equation (7)' becomes:

$$
\begin{equation*}
\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3}+\mathrm{s}_{4}=\mathrm{s} \tag{8}
\end{equation*}
$$

If the total quantity of concrete required is a unit quantity, then 'equation (8) should be divided throughout by s . Hence

$$
\begin{equation*}
\mathrm{s}_{1} / \mathrm{s}+\mathrm{s}_{2} / \mathrm{s}+\mathrm{s}_{3} / \mathrm{s}+\mathrm{s}_{4} / \mathrm{s}=\mathrm{s} / \mathrm{s} \tag{9}
\end{equation*}
$$

But fractional portions, $\mathrm{z}_{\mathrm{i}}=\mathrm{s}_{\mathrm{i}} / \mathrm{s}$
Substituting 'equation (10)' into 'equation (9)' gives 'equation (11)'

$$
\begin{equation*}
\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}+\mathrm{z}_{4}=1 \tag{10}
\end{equation*}
$$

Experience has shown that the coefficients of regression obtained when $\sum \mathrm{z}=1$ are mostly too large that the regression becomes too sensitive. As a result when the values of predictors outside the ones used in formulating the model are used to predict the response, the regression gives outrageous values. To correct this shortcoming, a system of z that will make $\sum \mathrm{z}=100$ will be adopted. Thus multiplying 'equation (11)' by 100 yields:

$$
\begin{equation*}
100 z_{1}+100 z_{2}+100 z_{3}+100 z_{4}=100 \tag{12}
\end{equation*}
$$

Let $100 \mathrm{z}_{\mathrm{i}}=\mathrm{Z}$
Therefore, 'equation (12)' becomes:

$$
\begin{equation*}
\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}+\mathrm{Z}_{4}=10 \tag{14}
\end{equation*}
$$

In the formulation of the regression equation, the point, $\mathrm{z}^{(0)}$ was chosen as the origin.
This implies that $z^{(0)}=0$ and so

$$
\mathrm{z}_{1}{ }^{(0)}=0, \mathrm{z}_{2}{ }^{(0)}=0, \mathrm{z}_{3}{ }^{(0)}=0 \text { and } \mathrm{z}_{4}{ }^{(0)}=0
$$

Let

$$
\begin{gather*}
\mathrm{b}_{0}=\mathrm{F}(0) \tag{15}\\
\mathrm{b}_{\mathrm{i}}=\partial \mathrm{F}(0) / \partial \mathrm{z}_{\mathrm{i}} \tag{16}\\
\mathrm{~b}_{\mathrm{ij}}=\partial^{2} \mathrm{~F}(0) / \partial \mathrm{z}_{\mathrm{i}} \partial \mathrm{z}_{\mathrm{j}} \tag{17}\\
\mathrm{bii}=\partial^{2} \mathrm{~F}(0) / \partial \mathrm{z}_{\mathrm{i}}^{2} \tag{18}
\end{gather*}
$$

Substituting 'equations (15) - (18)' into 'equation (5)' gives:

$$
\begin{equation*}
\mathrm{F}(\mathrm{z})=\mathrm{b}_{0}+\sum \mathrm{b}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}+\sum \sum \mathrm{b}_{\mathrm{ij}} \mathrm{z}_{\mathrm{i}} \mathrm{z}_{\mathrm{j}}+\sum \mathrm{b}_{\mathrm{ii}} \mathrm{z}_{\mathrm{i}}^{2}+\ldots \ldots \tag{19}
\end{equation*}
$$

where $1 \leq i \leq 4$ and $1 \leq j \leq 4$
Multiplying 'equation (11)' by b_{0} gives the expression for b_{0} i.e. 'equation (20)'

$$
\begin{equation*}
\mathrm{b}_{0}=\mathrm{b}_{0} \mathrm{z}_{1}+\mathrm{b}_{0} \mathrm{z}_{2}+\mathrm{b}_{0} \mathrm{z}_{3}+\mathrm{b}_{0} \mathrm{z}_{4} \tag{20}
\end{equation*}
$$

Multiplying 'equation (11)' by $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ and z_{4}, and rearranging the products, gives 'equation (21)-(24)'

$$
\begin{align*}
& \mathrm{Z}_{1}^{2}=\mathrm{Z}_{1}-\mathrm{Z}_{1} \mathrm{Z}_{2}-\mathrm{Z}_{1} \mathrm{Z}_{3}-\mathrm{Z}_{1} \mathrm{Z}_{4} \tag{21}\\
& \mathrm{Z}_{2}{ }^{2}=\mathrm{Z}_{2}-\mathrm{Z}_{1} \mathrm{Z}_{2}-\mathrm{Z}_{2} \mathrm{Z}_{3}-\mathrm{Z}_{2} \mathrm{Z}_{4} \tag{22}\\
& \mathrm{Z}_{3}{ }^{2}=\mathrm{Z}_{3}-\mathrm{Z}_{1} \mathrm{Z}_{3}-\mathrm{Z}_{2} \mathrm{Z}_{3}-\mathrm{Z}_{3} \mathrm{Z}_{4} \tag{23}\\
& \mathrm{Z}_{4}^{2}=\mathrm{Z}_{4}-\mathrm{Z}_{1} \mathrm{Z}_{4}-\mathrm{Z}_{2} \mathrm{Z}_{4}-\mathrm{Z}_{3} \mathrm{Z}_{4} \tag{24}
\end{align*}
$$

Substituting 'equations (20) - (24)' into equation (19)' and simplifying yields 'equation (25)'

$$
\begin{align*}
& Y=\alpha_{1} \mathrm{Z}_{1}+\alpha_{2} \mathrm{Z}_{2}+\alpha_{3} \mathrm{Z}_{3}+\alpha_{4} \mathrm{Z}_{4}+\alpha_{12} \mathrm{Z}_{1} \mathrm{Z}_{2}+\alpha_{13} \mathrm{Z}_{1} \mathrm{Z}_{3} \\
& +\alpha_{14} \mathrm{Z}_{1} \mathrm{Z}_{4}+\alpha_{23} \mathrm{Z}_{2} \mathrm{Z}_{3}+\alpha_{24} \mathrm{Z}_{2} \mathrm{Z}_{4}+\alpha_{34} \mathrm{Z}_{3} \mathrm{Z}_{4} \tag{25}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{i}=b_{0}+b_{i}+b_{i i} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{i j}=b_{i j}-b_{i i}-b_{j j} \tag{27}
\end{equation*}
$$

In general, 'equation (25)' is given as

$$
\begin{equation*}
\mathrm{Y}=\sum \alpha_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}+\sum \alpha_{\mathrm{ij}} \mathrm{z}_{\mathrm{i}} \mathrm{z}_{\mathrm{j}} \tag{28}
\end{equation*}
$$

where $1 \leq \mathrm{i} \leq \mathrm{j} \leq 4$
'Equations (25) and (28)' are the optimization model equations when the system of $\Sigma z=1$ is used. But the system of $\Sigma Z=100$ is adopted here and 'equation (28)' becomes:

$$
\begin{equation*}
\mathrm{Y}=\sum \alpha_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}+\sum \alpha_{\mathrm{ij}} \mathrm{Z}_{\mathrm{i}} \mathrm{Z}_{\mathrm{j}} \tag{29}
\end{equation*}
$$

where $1 \leq \mathrm{i} \leq \mathrm{j} \leq 4$
Y is the response function at any point of observation, z_{i} and Z_{i} are the predictors and α_{i} and α_{i} are the coefficients of the optimization model equations when systems $\sum z_{i}=1$ and $\sum Z_{i}=100$ are used respectively.

3.3 Determination of the coefficients of the optimization model equation

Different points of observation will have different responses with different predictors at constant coefficients. At nth observation point, $\mathrm{Y}^{(\mathrm{n})}$ will correspond with $\mathrm{Z}_{\mathrm{i}}^{(\mathrm{n})}$. That is,

$$
\begin{equation*}
\mathrm{Y}^{(\mathrm{n})}=\sum \alpha_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}^{(\mathrm{n})}+\sum \alpha_{\mathrm{ij}} \mathrm{Z}_{\mathrm{i}}^{(\mathrm{n})} \mathrm{Z}_{\mathrm{j}}^{(\mathrm{n})} \tag{30}
\end{equation*}
$$

where $1 \leq \mathrm{i} \leq \mathrm{j} \leq 4$ and $\mathrm{n}=1,2,3$.10
'Equation (30)' can be put in matrix from as
$\left[\mathrm{Y}^{(\mathrm{n})}\right]=\left[\mathrm{Z}^{(\mathrm{n})}\right]\{\alpha\}$
Rearranging 'equation (31)' gives:

$$
\begin{equation*}
\{\alpha\}=\left[\mathrm{Z}^{(\mathrm{n})}\right]^{-1}\left[\mathrm{Y}^{(\mathrm{n})}\right] \tag{32}
\end{equation*}
$$

The actual mix proportions, $\left.\mathrm{s}_{\mathrm{i}}^{(\mathrm{n}}\right)$ and the corresponding fractional portions, $\mathrm{z}_{\mathrm{i}}{ }^{(\mathrm{n})}$ are presented in (Table 2). These values of the fractional portions $Z^{(n)}$ were used to develop $Z^{(n)}$ matrix and the inverse of $Z^{(n)}$ matrix presented in (Table 3). The values of $\mathrm{Y}^{(\mathrm{n})}$ matrix are determined from laboratory tests and presented in (Table 4). With the values of the matrices $\mathrm{Y}^{(\mathrm{n})}$ and $\mathrm{Z}^{(\mathrm{n})}$ known, it is easy to determine the values of the constant coefficients of 'equation (31)'.

3.4 Experimental Method

The actual components as transformed from 'equation (4)' and (Table 1) were used to measure out the quantities water $\left(Z_{1}\right)$, cement $\left(Z_{2}\right)$, sand $\left(Z_{3}\right)$, and coarse aggregates $\left(Z_{4}\right)$ in their respective ratios for the modulus of rupture of concrete test. For instance, the actual ratio for the test number 20 means that the concrete mix ratio is $1: 2.5$: 5.3 at 0.5 free water/cement ratio. A total of 25 mix ratios were used to produce 50 prototype concrete beams measuring $150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 600 \mathrm{~mm}$ that were cured and tested on the $28^{\text {th }}$ day. Fifteen out of 20 mix ratios were used as control mix ratios to produce 30 beams for the confirmation of the adequacy of the mixture design model given by 'equation (25)'. The beams were then tested for flexural strength (i.e. modulus of rupture) using the hand operated flexural testing machine. The symmetrical two point loading system was used. The load under which the beam specimen failed was recorded and used to compute the modulus of rupture of the prototype beams [11].

IV. Results And Analysis

The test result of the modulus of rupture of concrete $\left(\mathrm{Y}_{\mathrm{i}}\right)$ based on day 28-day strength, is presented as part of (Table 4).
The flexural strength (modulus of rupture) was obtained from the following equation:

$$
\begin{equation*}
\sigma=\mathrm{WL} / \mathrm{bh}^{2} \tag{33}
\end{equation*}
$$

where σ is the modulus of rupture in Mega Pascals (MPa) or Newtons per millimeters squared $\left(\mathrm{Nmm}^{-2}\right)$.
$\mathrm{W}=$ maximum load in Newtons (N).
$\mathrm{L}=$ the distance between supporting rollers in millimetres (mm).
b and h are the lateral dimensions of the specimen, in millimetres.
The values of the mean of responses, Y and the variances of replicates $S_{i}{ }^{2}$ presented in columns 5 and 8 of (Table 4) are gotten from the following 'equations (34) and (35)':

$$
\begin{gather*}
\mathrm{Y}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}} / \mathrm{n} \tag{34}\\
\mathrm{~S}_{\mathrm{i}}^{2}=[1 /(\mathrm{n}-1)]\left\{\sum \mathrm{Y}_{\mathrm{i}}^{2}-\left[1 / \mathrm{n}\left(\sum \mathrm{Y}_{\mathrm{i}}\right)^{2}\right]\right\} \tag{35}
\end{gather*}
$$

where $1 \leq \mathrm{i} \leq \mathrm{n}$ and this equation is an expanded form of 'equation(36)'

$$
\begin{equation*}
\mathrm{S}_{\mathrm{i}}^{2}=[1 /(\mathrm{n}-1)]\left[\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{Y}\right)^{2}\right] \tag{36}
\end{equation*}
$$

where $\mathrm{Y}_{\mathrm{i}}=$ responses
$Y=$ mean of the responses for each control point
$\mathrm{n}=$ number of parallel observations at every point
$\mathrm{n}-1=$ degree of freedom
$\mathrm{S}_{\mathrm{i}}^{2}=$ variance at each design point
Considering all the design points, the number of degrees of freedom, V_{e} is given as

$$
\begin{align*}
\mathrm{V}_{\mathrm{e}} & =\sum \mathrm{N}-1 \tag{37}\\
= & 25-1 \\
& =24
\end{align*}
$$

where N is the number of points
Replication variance, $S_{y}^{2}=(1 / \mathrm{Ve}) \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{S}_{\mathrm{i}}{ }^{2}$

$$
\begin{equation*}
=22.172 / 24=0.924 \tag{38}
\end{equation*}
$$

where S_{i}^{2} is the variance at each point
Using 'equations (37) and (38)', the replication error, S_{y} can be determined as follows:

$$
\begin{align*}
S_{y} & =\sqrt{S_{y}^{2}} \tag{39}\\
& =0.961
\end{align*}
$$

This replication error value was used below to determine the t-statistics values for Scheffe's simplex model.

4.1 Determination of the optimisation model based on Osadebe's theory

Substituting the values of $\mathrm{Y}^{(\mathrm{n})}$ from test results presented in (Table 4) into 'equation (32)' gives the following values of the coefficients of the model developed i.e. 'equation (25)'.
$\alpha_{1}=448366.053 \quad \alpha_{2}=-3.70408 .3989 \quad \alpha_{3}=-13065.39191$
$\alpha_{4}=3.283969106 \quad \alpha_{5}=796.3475619 \quad \alpha_{6}=-5211.73858$
$\alpha_{7}=5857.977279$
$\alpha_{8}=5309.170464$
$\alpha_{9}=4734.703595$
$\alpha_{10}=-6.916241183$

Substituting the values of these coefficients into 'equation (31)' yields:

$$
\begin{aligned}
& \mathrm{Y}=448366.053 \mathrm{Z}_{1}-370408.3989 \mathrm{Z}_{2}-13065.39191 \mathrm{Z}_{3}+3.283969106 \mathrm{Z}_{4} \\
&+796.3475619 \mathrm{Z}_{1} \mathrm{Z}_{2}-5211.73858 \mathrm{Z}_{1} \mathrm{Z}_{3}-5857.977279 \mathrm{Z}_{1} \mathrm{Z}_{4} \\
&+5309.170464 \mathrm{Z}_{2} \mathrm{Z}_{3}+4734.703595 \mathrm{Z}_{2} \mathrm{Z}_{4}-6.916241183 \mathrm{Z}_{3} \mathrm{Z}_{4}
\end{aligned}
$$

'Equation (40)' is Osadebe's mathematical model of modulus of rupture of concrete based on the 28 -day strength.

4.2 Test of the adequacy of the model

Osadebe's model equation was tested for adequacy against the controlled experimental results. It will be recalled that the hypothesis for this mathematical model are as follows: Null Hypothesis $\left(\mathrm{H}_{0}\right)$: There is no significant difference between the experimental and the theoretically expected results at an α - level of 0.05 . Alternative Hypothesis $\left(\mathrm{H}_{1}\right)$: There is a significant difference between the experimental and theoretically expected results at an α-level of 0.05 . The student's t-test and fisher test statistics were used for this test. The expected values (Y predicted) for the test control points were obtained by substituting the values of Z_{i} from Z^{n} matrix into the model equation i.e. 'equation (40)'. These values were compared with the experimental result ($\mathrm{Y}_{\text {observed }}$) from (Table 5).

4.3 Student's test

For this test, the parameters $\Delta_{\mathrm{Y}}, \epsilon$ and t are evaluated using the following equations respectively

$$
\begin{gather*}
\Delta_{Y}=Y_{\text {(observed) }}-Y_{\text {(predicted) }} \tag{41}\\
\epsilon=\left(\sum a_{i}^{2}+\sum a_{i j}^{2}\right) \tag{42}\\
t=\Delta y \sqrt{n} /(S y \sqrt{ } 1+\epsilon) \tag{43}
\end{gather*}
$$

where ϵ is the estimated standard deviation or error,
t is the t -statistics,
n is the number of parallel observations at every point
S_{y} is the replication error
a_{i} and a_{ij} are coefficients while i and j are pure components
$\mathrm{a}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}\left(2 \mathrm{X}_{\mathrm{i}}-1\right)$
$\mathrm{a}_{\mathrm{ij}}=4 \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}$
$\mathrm{Y}_{\text {obs }}=\mathrm{Y}_{\text {(observed) }}=$ Experimental results
$\mathrm{Y}_{\mathrm{pre}}=\mathrm{Y}_{\text {(predicted) }}=$ Predicted results
At significant level, $\alpha=0.05, \mathrm{t}_{\alpha 11}\left(\mathrm{~V}_{\mathrm{e}}\right)=\mathrm{t}_{0.05 / 10}=\mathrm{t}_{0.005(14)}=2.977$. The t -value is obtained from standard $\mathrm{t}-$ statistics table.
Since this is greater than any of the t- values calculated in (Table 5), we accept the Null hypothesis. Hence the model is adequate.

4.4 Fisher Test

For this test, the parameter y , is evaluated using the following equation:

$$
\begin{equation*}
\mathrm{y}=\sum \mathrm{Y} / \mathrm{n} \tag{44}
\end{equation*}
$$

where Y is the response and n the number of responses.
Using variance, $S^{2}=[1 /(n-1)]\left[\sum(Y-y)^{2}\right]$ and $y=\sum Y / n$ for $1 \leq i \leq n$
Therefore from (Table 6),
$\mathrm{S}^{2}{ }_{\text {(obs) }}=10.64933 / 14=0.761$ and $\mathrm{S}^{2}{ }_{\text {(pre) }}=12.36237 / 14=0.883$
But the fisher test statistics is given by:

$$
\begin{equation*}
\mathrm{F}=\mathrm{S}^{2}{ }_{1} / \mathrm{S}_{2}^{2} \tag{46}
\end{equation*}
$$

where S_{1}^{2} is the larger variance
Hence $S^{2}{ }_{1}=0.833$ and $S_{2}{ }_{2}=0.761$
Therefore, $\mathrm{F}=0.833 / 0.761=1.095$
From standard Fisher Table, $\mathrm{F}_{0.95}(14,14)=2.41$. Hence the regression equation is adequate.

4.5 Comparison of results

The results obtained from the model were compared with those obtained from the experiment, as presented in (Table 7) A comparison of the predicted results with the experimental results shows that the percentage difference ranges from a minimum of 2.95% to a maximum of 7.07%, which is insignificant.

V. Conclusion

1. Osadebe's regression model using Taylor's series has been applied and used successfully to develop mathematical models for optimization of modulus of rupture of concrete.
2. The modulus of rupture of concrete is a function of the proportions of the ingredients (cement, water, sand and coarse aggregate) of the concrete.
3. The student's t-test and the fisher test used in the statistical hypothesis showed that the model developed is adequate.
4. Since the maximum percentage difference between the experimental result and the predicted result is insignificant (i.e. 7.07%), the optimisation model will yield accurate values of modulus of rupture if given the mix proportions and vice versa.

Vi Nomenclature

\sum summation
\leq less or equal to

- subtraction
+ addition
x multiplication
$\sqrt{ }$ square root
a coefficient
b constant coefficient
σ modulus of rupture of concrete
mm millimetres
$\Delta_{\mathrm{Y}} \quad$ change in Y
[bracket
(parenthesis
X_{i} proportion of the ith component in the mixture.
q number of components of a mixture
A vertice of tetrahedron
X pseudo components (variables)
Z actual components (variables)
B inverse of matrix A
$\mathrm{F}(\mathrm{z})$ response function
$\mathrm{z}_{\mathrm{i}} \quad$ predictor(fractional portion)
s_{i} actual portions
α_{i} coefficients of optimisation model equation
Yi response(modulus of rupture of concrete)
Y mean of responses
n number of parallel observations at every point
N number of points
$\mathrm{S}^{2}{ }_{1}$ variance at each design point
$\epsilon \quad$ estimated standard deviation or error
t t-statistics
S_{y} replication error
a_{i} and a_{ij} coefficients
i and j pure components
$\mathrm{Y}_{\text {obs }}=\mathrm{Y}_{\text {(observed) }}=$ Experimental results
$\mathrm{Y}_{\text {pre }}=\mathrm{Y}_{\text {(predicted) }}=$ Predicted results
F Fisher test statistics

References

[1] Neville, A.M. (1996). Properties of concrete. England: Longman.
[2] International Concrete Repair Institute Concrete Repair Terminology [online]. Available from: http://www.google.com/search.
[3] Hueste, M.B.D.; Chompreda, P.; Trejo David; Clinic Daren B.H.; and Feating, P.B. (2004). Mechanical properties of high strength concrete for prestressed members. ACI Structural Journal.
[4] Kohler, E.; Ali, A.; and Harvey, J. (2005). Flexural fatigue life of hydraulic cement concrete beam. Department of Transportation, Partnered Pavement Research Centre, University of Carlifornia, Davies and Berkeley.
[5] Elinwa, A.U.; and Ejeh, S.P. (2005). Characteristics of sisal fibre reinforced concrete. Journal of Civil Engineering Research and Practice, 2 (1), 1-14.
[6] British Standards Institution, 1978. BS 12: 1978. Specification for Portland cement.
[7] British Standards Institution (1992). BS 882: 1992. Specification for aggregates from natural sources for concrete.
[8] British Standards Institution (2002). BS EN 1008: 2002. Mixing water for concrete -Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete.
[9] Scheffe, H. (1958). Experiments with Mixtures. Royal Statistical Society Journal, 20 (B). 344-360.
[10] Osadebe, N.N. (2003). Generalised mathematical modeling of compressive strength of normal concrete as a multi-variant function of the properties of its constituent components. A paper delivered at the college of Engineering, University of Nigeria, Nsukka.
[11] Okere, C.E. (2006). Mathematical Models for Optimisation of Modulus of Rupture of Concrete. Thesis (M. Eng). Federal University of Technology Owerri.

Table 1. Actual Components Z (points 1 to 25)

N	X_{1}	X_{2}	X_{3}	X_{4}	Response	Z_{1}	Z_{2}	Z_{3}	Z_{4}
1	1	0	0	0	Y_{1}	0.55	1	2	4
2	0	1	0	0	Y_{2}	0.50	1	2.5	6
3	0	0	1	0	Y_{3}	0.45	1	3	5.5
4	0	0	0	1	Y_{4}	0.6	1	1.5	3.5
5	0.5	0.5	0	0	Y_{12}	0.525	1	2.25	5
6	0.5	0	0.5	0	Y_{13}	0.5	1	2.5	4.75
7	0.5	0	0	0.5	Y_{14}	0.575	1	1.75	3.75
8	0	0.5	0.5	0	Y_{23}	0.475	1	2.75	5.75
9	0	0.5	0	0.5	Y_{24}	0.55	1	2	4.75
10	0	0	0.5	0.5	Y_{34}	0.525	1	2.25	4.5

Control points within the factor space

11	0.5	0.25	0.25	0	C_{1}	0.5125	1	2.375	4.875
12	0.25	0.25	0.25	0.25	C_{2}	0.525	1	2.25	4.75
13	0	0.25	0.25	0.5	C_{3}	0.5375	1	2.125	4.625
14	0	0.25	0	0.75	C_{4}	0.575	1	1.75	4.125
15	0.75	0	0.25	0	C_{5}	0.525	1	2.25	4.375
16	0	0.5	0.25	0.25	C_{6}	0.5125	1	2.375	5.25
17	0.25	0	0.5	0.25	C_{7}	0.5125	1	2.375	4.625
18	0.75	0.25	0	0	C_{8}	0.5375	1	2.125	4.5
19	0	0.75	0.25	0	C_{9}	0.4875	1	2.625	5.875
20	0	0.4	0.4	0.2	C_{10}	0.5	1	2.5	5.3

Control points outside the factor space

21	0.5	0.5	0.5	0.5	C_{11}	1.05	2	4.5	9.5
22	0.25	0	0.25	0	C_{12}	0.35	0.5	1.375	2.875
23	0.5	0	0.5	0.5	C_{13}	0.8	1.5	3.25	6.5
24	0.25	0.25	0.25	0	C_{14}	0.375	0.75	1.875	3.875
25	0	0.5	0.5	0.25	C_{15}	0.625	1.25	3.125	6.625

Table 2. Values of actual mix proportions and the corresponding fractional portions

N	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	RESPONSE	Z_{1}	Z_{2}	Z_{3}	Z_{4}
1	0.55	1	2	4	Y_{1}	7.285	13.245	26.490	52.980
2	0.5	1	2.5	6	Y_{2}	5.000	10.000	25.000	60.000
3	0.45	1	3	5.5	Y_{3}	4.523	10.050	30.151	55.276
4	0.6	1	1.5	3.5	Y_{4}	9.091	15.152	22.727	53.030
5	0.525	1	2.25	5	Y_{12}	5.983	11.396	25.641	56.980
6	0.5	1	2.5	4.75	Y_{13}	5.714	11.429	28.571	54.286
7	0.575	1	1.75	3.75	Y_{14}	8.127	14.134	24.735	53.004
8	0.475	1	2.75	5.75	Y_{23}	4.762	10.025	27.569	57.644
9	0.55	1	2	4.75	Y_{24}	6.627	12.048	24.096	57.229
10	0.525	1	2.25	4.5	Y_{34}	6.344	12.085	27.190	54.381

Table 3. $\mathrm{Z}^{(\mathrm{n})}$ matrix and inverse of $\mathrm{Z}^{(\mathrm{n})}$ matrix
$Z^{(n)}$ matrix

Z_{1}	Z_{2}	Z_{3}	Z_{4}	$\mathrm{Z}_{1} \mathrm{Z}_{2}$	$\mathrm{Z}_{1} \mathrm{Z}_{3}$	$\mathrm{Z}_{1} \mathrm{Z}_{4}$	$\mathrm{Z}_{2} \mathrm{Z}_{3}$	$\mathrm{Z}_{2} \mathrm{Z}_{4}$	$\mathrm{Z}_{3} \mathrm{Z}_{4}$
7.2848	13.2450	26.4901	52.9801	96.4872	192.9751	385.9494	350.8614	701.7214	1403.44
5.0000	10.0000	25.000	60.0000	50.0000	125.0000	300.0000	250.0000	600.0000	1500.00
4.5226	10.0503	30.1508	55.2764	45.4535	136.3600	249.9930	303.0246	555.5444	1666.62
9.0909	15.1515	22.7273	53.0303	137.7408	206.6116	482.0932	344.3527	803.4886	1205.23
5.9829	11.3960	25.6410	56.9801	68.1811	153.4075	340.9062	292.2048	649.3452	1461.02
5.7143	11.4286	28.5714	54.2857	65.3065	163.2656	310.2048	326.5311	620.4096	1551.01
8.1272	14.1343	24.7350	53.0035	114.8723	201.0263	430.7700	349.6119	749.1674	1311.04
4.7619	10.0251	27.5689	57.6441	47.7385	131.2803	274.4954	276.3810	577.8879	1589.18
6.6265	12.0482	24.0964	57.2289	79.8374	159.6748	379.2273	290.3182	689.5052	1379.01
6.3444	12.0846	27.1903	54.3807	76.6695	172.5061	345.0129	328.5839	657.1690	1478.62

Inverse of $\mathbf{Z}^{(\mathrm{n})}$ matrix

9933.0126	-71564049	-98031.564	163046017	-1988887094	-392023.8683	-343434.5107	350976.150	3833909886	85696668009
1896.1943	427518993	-764978.860	826888667	12016.677	1648820897	-706966484	-739208754	-13453999780	61121.197
40937500	-570.9776	-184.6822	-88363837	584.1348	166161245	166115960	7780.1215	88837940	-37627.2883
0.5183	12730	-0.266	0.9967	-5.1461	308	-1.85i1	0.296	1.7086	3.6132
-5844,499	-870.949	3500.484	-4782.618	13881.872	3014.260	110005788	-41172306	-35	-1666313119
13949796	-488.4334	7162966	-2163.1545	8325.4328	4984.4571	6305.2502	-2498.7385	-2665.475	-11100.6600
2641.1865	482982	959.6033	-1022:4	103532216	4.189 .8831	4851.5227	-4619.0266	-52727	-7791.272
1033,6835	0.6347	10337686	-185.734	-1411.4036	-32436375	-611.142	176.561	7789482	2488.7816
1730.482	-7359938	7819636	-12303211	-250903008	-1880.468	1075887	1571.146	2420.808	-1235.087
-1091698	98.422	16.2059	14211187	1689446	-134.838	-215.195!	-188.714	-231.3071	4592965

Table 4. Test Results and Replication Variance

$\begin{gathered} \hline \text { EXP } \\ \text { NO } \\ \hline \end{gathered}$	Replicates	$\begin{gathered} \text { Response } \mathrm{Y}_{\mathrm{i}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	Response Symbol	Y	$\sum \mathrm{Y}_{\mathrm{i}}$	$\sum \mathrm{Yi}^{2}$	Si ${ }^{2}$
1	$\begin{aligned} & \text { 1A } \\ & \text { IB } \end{aligned}$	$\begin{aligned} & 5.96 \\ & 6.44 \end{aligned}$	Y_{1}	6.2	12.40	77.00	0.120
2	$\begin{aligned} & 2 \mathrm{~B} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 5.82 \\ & 5.86 \\ & \hline \end{aligned}$	Y_{2}	5.8	11.68	68.21	0.000
3	$\begin{aligned} & 3 \mathrm{~A} \\ & 3 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.84 \\ & 6.33 \end{aligned}$	Y_{3}	5.6	11.17	63.49	1.105
4	$\begin{aligned} & \text { 4A } \\ & 4 B \end{aligned}$	$\begin{aligned} & 5.73 \\ & 6.04 \\ & \hline \end{aligned}$	Y_{4}	5.9	11.77	69.31	0.043
5	$\begin{aligned} & 5 \mathrm{~A} \\ & 5 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{array}{r} 4.58 \\ 5.72 \\ \hline \end{array}$	Y_{12}	5.2	10.30	53.69	0.645
6	$\begin{aligned} & \hline 6 \mathrm{~A} \\ & 6 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 . .16 \\ & 3.70 \end{aligned}$	Y_{13}	4.4	8.86	40.32	1.070
7	$\begin{aligned} & 7 \mathrm{~A} \\ & 7 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6.32 \\ & 7.38 \end{aligned}$	Y_{14}	6.9	13.70	94.41	0.565
8	$\begin{aligned} & \text { 8A } \\ & \text { 8B } \end{aligned}$	$\begin{aligned} & 4.49 \\ & 4.46 \\ & \hline \end{aligned}$	Y_{23}	4.5	8.95	40.05	0.000
9	$\begin{aligned} & \text { 9A } \\ & 9 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 5.16 \\ & 7.38 \end{aligned}$	Y_{24}	6.3	12.54	81.09	2.464
10	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 6.63 \\ & 5.11 \end{aligned}$	Y_{34}	5.9	11.74	70.07	1.156
11	$\begin{aligned} & 11 \mathrm{~A} \\ & 11 \mathrm{~B} \end{aligned}$	$\begin{array}{r} 4.58 \\ 5.07 \\ \hline \end{array}$	C_{1}	4.8	9.65	46.68	0.119
12	$\begin{aligned} & 12 \mathrm{~A} \\ & 12 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 4.09 \\ & 6.80 \end{aligned}$	C_{2}	5.4	10.89	62.97	3.674
13	$\begin{aligned} & \text { 13A } \\ & \text { 13B } \end{aligned}$	$\begin{aligned} & \hline 5.87 \\ & 6.14 \end{aligned}$	C_{3}	6.0	12.01	72.16	0.040
14	$\begin{aligned} & \hline 14 \mathrm{~A} \\ & 14 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.54 \\ & 5.68 \\ & \hline \end{aligned}$	C_{4}	6.1	12.22	75.03	0.366
15	$\begin{aligned} & \text { 15A } \\ & \text { 15B } \end{aligned}$	$\begin{aligned} & 4.72 \\ & 5.68 \end{aligned}$	C_{5}	5.2	10.40	54.54	0.460
16	$\begin{aligned} & 16 \mathrm{~A} \\ & 16 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 4.80 \\ & 3.64 \end{aligned}$	C_{6}	4.2	8.44	36.29	0.673
17	$\begin{aligned} & 17 \mathrm{~A} \\ & 17 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3.96 \\ & 5.07 \end{aligned}$	C_{7}	4.5	9.03	41.39	0.619
18	$\begin{aligned} & 18 \mathrm{~A} \\ & \text { 18B } \\ & \hline \end{aligned}$	$\begin{aligned} & 5.29 \\ & 3.16 \\ & \hline \end{aligned}$	C_{8}	4.2	8.45	37.97	2.269
19	$\begin{aligned} & \text { 19A } \\ & \text { 19B } \end{aligned}$	$\begin{aligned} & 4.49 \\ & 3.15 \\ & \hline \end{aligned}$	C9	3.8	7.64	30.08	0.895
20	$\begin{aligned} & 20 \mathrm{~A} \\ & 20 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.13 \\ & 5.48 \\ & \hline \end{aligned}$	C_{10}	5.3	10.61	56.35	0.064
						Σ	16.347
CONTROL OUTSIDE FACTOR SPACE							
21	$\begin{aligned} & \text { 21A } \\ & 21 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 4.09 \\ & 6.80 \end{aligned}$	C_{11}	5.4	10.89	62.97	3.674
22	$\begin{aligned} & 22 \mathrm{~A} \\ & 22 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 5.24 \\ & 5.82 \end{aligned}$	C_{12}	5.5	11.06	61.33	0.168
23	$\begin{aligned} & 23 \mathrm{~A} \\ & 23 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 5.51 \\ & 5.69 \end{aligned}$	C_{13}	5.6	11.20	62.74	0.020
24	$\begin{aligned} & \text { 24A } \\ & 24 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3.02 \\ & 5.02 \end{aligned}$	C_{14}	4.0	8.04	34.32	1.959
25	$\begin{aligned} & \text { 25A } \\ & 25 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3.20 \\ & 3.07 \end{aligned}$	C_{15}	3.1	6.27	19.66	0.004
						$\Sigma \Sigma$	22.172

Table 5. T-Statistics for test control points

N	CN	i	j	a_{i}	a_{ij}	$\mathrm{a}^{2}{ }_{i}$	$\mathrm{a}^{2}{ }_{\mathrm{ij}}$	ϵ	$\mathrm{Y}_{\text {obs }}$	$\mathrm{Y}_{\mathrm{pre}}$	$\underline{\Delta_{Y}}$	t
1	C_{1}	1	2	0	0.5	0	0.25	0.6093	4.8	4.4	0.4	0.46
		1	3	0	0.5	0	0.25					
		1	4	0	0	0	0					
		2	3	-0.125	0.25	0.0156	0.0625					
		2	4	-0.125	0	0.0156	0					
		3	4	-0.125	0	0.0156	0					
		4	-	0	-	0	0					
					Σ	0.0468	0.5625					
2	C_{2}	1	2	-0.125	0.25	0.0156	0.0625	0.4842	5.4	5.02	0.38	0.46
		1	3	-0.125	0.25	0.0156	0.0625					
		1	4	-0.125	0.25	0.0156	0.0625					
		2	3	-0.125	0.25	0.0156	0.0625					
		2	4	-0.125	0.25	0.0156	0.0625					
		3	4	-0.125	0.25	0.0156	0.0625					
		4	-	-0.125	-	0.0156	-					
					Σ	0.1092	0.375					
3	C_{3}	1	2	0	0	0	0	0.6093	6.0	5.22	0.78	0.90
		1	3	0	0	0	0					
		1	4	0	0	0	0					
		2	3	-0.125	0.25	0.0156	0.0625					
		2	4	-0.125	0.5	0.0156	0.25					
		3	4	-0.125	0.5	0.0156	0.25					
		4	-	0	-	0	-					
					Σ	0.0468	0.5625					
4	C_{4}	1	2	0	0	0	0	0.7343	6.1	6.28	0.18	0.20
		1	3	0	0	0	0					
		1	4	0	0	0	0					
		2	3	-0.125	0	0.0156	0					
		2	4	-0.125	0.75	0.0156	0.5625					
		3	4	0	0	0	0					
		4	-	0.375	-	0.1406	-					
					Σ	0.1718	0.5625					
5	C_{5}	1	2	0.375	0	0.1406	0	0.9999	5.2	5.57	0.55	1.36
		1	3	0.375	0.75	0.1406	0.5625					
		1	4	0.375	0	0.1406	0					
		2	3	0	0	0	0					
		2	4	0	0	0	0					
		3	4	-0.125	0	0.0156	0					
		4	-	0	-	0	-					
					Σ	0.4374	0.5625					
6	C_{6}	1	2	0	0	0	0	0.5937	4.2	4.4	-0.2	0.23
		1	3	0	0	0	0					
		1	4	0	0	0	0					
		2	3	0	0	0	0.25					
		2	4	0	0.5	0	0.25					
		3	4	-0.125	0.25	0.0156	0.0625					
		4	-	-0.125	-	0.0156	-					
					Σ	0.0312	0.5625					
7	C_{7}	1	2	-0.125	0	0.0156	0	0.6249	4.5	5.4	0.19	0.22
		1	3	-0.125	0.5	0.0156	0.25					
		1	4	-0.125	0.25	0.0156	0.0625					
		2	3	0	0	0	0					
		2	4	0	0	0	0					
		3	4	0	0.5	0	0.25					
		4	-	-0.125	-	0.0156	-					
					Σ	0.0624	0.5625					
8	C_{8}	1	2	0.375	0.75	0.1406	0.5625	1.0155	4.2	5.63	1.43	1.48
		1	3	0.375	0	0.1406	0					
		1	4	0.375	0	0.1406	0					
		2	3	-0.125	0	0.0156	0					
		2	4	-0.125	0	0.0156	0					
		3	4	0	0	0	0					
		4	-	0	0	0	0					
					Σ	0.453	0.5625					
9	C9	1	2	0	0	0	0		3.8	3.41	0.39	0.42
		1	3	0	0	0	0					
		1	4	0	0	0	0					
		2	3	0.375	0.75	0.1406	0.5625					
		2	4	0.375	0	0.1406	0					
		3	4	-0.125	0	0.0156	0					
		4	-	0	-	0	-					

					Σ	0.2968	0.5625	0.8593				
10	C_{10}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	0 0 0 -0.08 -0.08 -0.08 -0.12	$\boldsymbol{\Sigma}$ 0 0 0.64 0.32 0.32 -	0 0 0 0.0064 0.0064 0.0064 0.0144	0 0 0 0.4096 0.1024 0.1024	0.648	5.3	3.54	1.76	2.02
					Σ	0.0336	0.6144					
11	C_{11}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & - \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	7.0	5.4	5.02	0.38	0.20
					Σ	0	7					
12	C_{12}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} -0.125 \\ -0.125 \\ -0.125 \\ 0 \\ 0 \\ -0.125 \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0.25 \\ 0 \\ 0 \\ 0 \\ 0 \\ - \end{gathered}$	$\begin{gathered} \hline 0.0156 \\ 0.0156 \\ 0.0156 \\ 0 \\ 0 \\ 0.0156 \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0.0625 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	0.1249	5.5	4.26	1.24	1.72
					Σ	0.0624	0.0625					
13	C_{13}	1 1 1 2 2 2 3 4	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & - \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & - \end{aligned}$	3	5.6	5.82	0.22	0.16
					Σ	0	3					
14	C_{14}	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ 0 \end{gathered}$	$\begin{gathered} \hline 0.25 \\ 0.25 \\ 0 \\ 0.25 \\ 0 \\ 0 \\ - \end{gathered}$	$\begin{aligned} & \hline 0.0156 \\ & 0.0156 \\ & 0.0156 \\ & 0.0156 \\ & 0.0156 \\ & 0.0156 \\ & 0.0156 \end{aligned}$	$\begin{gathered} \hline 0.0625 \\ 0.0625 \\ 0 \\ 0.0625 \\ 0 \\ 0 \\ - \end{gathered}$	0.2811	4.0	3.5	0.5	1.09
					Σ	0.1875	0.1875					
15	C_{15}	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -0.125 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 1 \\ 0.5 \\ 0.5 \\ \hline- \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0156 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 1 \\ 0.25 \\ 0.25 \end{gathered}$	1.5156	3.1	3.54	0.44	0.41
					Σ	0.0156	1.5					

Table 6: F-Statistics for the controlled points

Response Symbol	$\mathrm{Y}_{\text {(observed) }}$	$\mathrm{Y}_{\text {(predicted) }}$	$\mathrm{Y}_{\text {(obs) }}-\mathrm{Y}_{(\text {(obs })}$	$\mathrm{Y}_{\text {(pre) }} \mathrm{y}^{-\mathrm{y}_{\text {(pre }}}$	$\mathrm{Y}_{\text {(obs) }} \mathrm{Y}_{(\text {(obs })^{2}}$	$\left(\mathrm{Y}_{(\text {pre) }}-\mathrm{y}_{(\text {pre }}\right)^{2}$
C_{1}	4.80	4.40	-0.07333	-0.29867	0.005378	0.089202
C_{2}	5.40	5.02	0.526667	0.321333	0.277378	0.103255
C_{3}	6.00	5.22	1.126667	0.521333	1.269378	0.271788
C_{4}	6.10	6.28	1.226667	1.581333	1.504711	2.500615
C_{5}	5.20	5.75	0.326667	1.05133	0.106711	1.105302
C_{6}	4.20	4.40	-0.67333	0.29867	0.453378	0.089202
C_{7}	4.50	4.69	-0.37333	-0.00867	0.139378	$7.51 \mathrm{E}-05$
C_{8}	4.20	5.63	-0.67333	0.931333	0.453378	0.867382
C_{9}	3.80	3.41	-1.07333	-1.28867	0.152044	1.660662
C_{10}	5.30	3.54	0.426667	-1.15867	0.182044	1.342508
C_{11}	5.40	5.02	0.526667	0.321333	0.277378	0.103255
C_{12}	5.50	4.26	0.626667	-0.43867	0.392711	0.192428
C_{13}	5.60	5.82	0.726667	1.121333	0.528044	1.257388
C_{14}	4.00	3.50	-0.87333	-1.19867	0.762711	1.436802
C_{15}	3.10	3.54	-1.77333	-1.15867	3.144711	1.342508
Sum	73.10	70.48			10.64933	12.36237
Mean	$\mathrm{y}_{(\text {(obs }}=4.87$	$\mathrm{y}_{(\text {(pre) }}=4.70$				

Table 7: Comparison of some Predicted Result with Experimental Results

S/N	Experimental Result $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	Predicted Result $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	Percentage Difference
1	4.50	4.69	4.22
2	5.40	5.02	7.07
3	5.60	5.82	3.93
4	6.10	6.28	2.95
5	4.50	4.69	4.22
6	4.20	4.40	4.76

Fig 1 : Vertices of a $(4,2)$ lattice (actual)
$\mathrm{A}_{1}\left(\mathrm{I}_{2} \mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}\right)$

Fig 2: Vertices of a $(4,2)$ 1attice (pseudo)

