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Abstract: The modulus of rupture (MOR) of concrete is a function of the proportions of the constituent 
materials, namely, cement, water, fine and coarse aggregates. The conventional methods used to determine the 

mix proportions that will yield a desired modulus of rupture, are laborious, time consuming and expensive. In 

this paper, a mathematical method based on Osadebe’s concrete optimisation theory is formulated for the 

optimisation of the modulus of rupture of concrete. The model can prescribe all the mixes that will produce a 

desired modulus of rupture of concrete. It can also predict the modulus of rupture of concrete if the mix 

proportions are specified .The adequacy of the mathematical model is tested using statistical tools. 
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I. Introduction 
Concrete is a construction material in which strength is very important. The strength is of such utmost 

importance that it is used as a yardstick for judging other concrete properties such as permeability, durability, 

fire and abrasion resistances. The strength is usually given in form of compressive strength and flexural strength. 

The flexural strength is the property of a solid that indicates its ability to resist failure in bending [1] and the 
modulus of rupture (MOR) of concrete as defined by International Concrete Repair Institute is a measure of the 

ultimate load bearing capacity of a concrete beam tested in flexure [2].Various methods have been used to study 

and/or determine the modulus of rupture of concrete [3- 5]. All these methods are based on the conventional 

approach of selecting arbitrary mix proportions, subjecting concrete samples to laboratory and then adjusting the 

mix proportions in subsequent tests. Apparently, these methods are time consuming and expensive. In this paper, 

a mathematical model based on Osadebe’s concrete optimisation theory, is formulated for the optimization of 

the modulus of rupture of concrete. 
 

II. Materials 
The materials used in the production of the prototype concrete beams are cement, fine aggregates 

coarse aggregates and water. Eagle cement brand of Ordinary Portland cement with properties conforming to BS 

12 was used in the preparation of the concrete beam specimens [6]. The fine aggregates were fine and medium 

graded river sand of zone 3 sourced from Otamiri River in Imo State. The coarse aggregates were irregular 

shaped medium-graded coarse aggregates having a maximum size of 20mm and conforming to BS 882 [7]. 

They were free from clay lumps and organic materials. Potable water conforming to the specification of EN 

1008: was used in the production of the prototype concrete beam specimens [8]. 
 

III. Methods 
Two methods, namely analytical and experimental methods were used in this work. 

 

3.1  Analytical methods 

Here, optimization method is used in formulating a mathematical model for predicting the modulus of 

rupture of concrete. The model is based on Osadebe’s regression theory. A simplex lattice is described as a 

structural representation of lines joining the atoms of a mixture .The atoms are constituent components of the 

mixture. For a normal concrete mixture, the constituent elements are water, cement, fine and coarse aggregates 

and so it gives a simplex of a mixture of four components. Hence the simplex lattice of this four-component 

mixture is a three-dimensional solid equilateral tetrahedron. Mixture components are subject to the constraint 

that the sum of all the components must be equal to one [9].  In order words: 
 

 X1 + X2 + X3 + …….+ Xq = 1 (1) 
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 q 

 ∑Xi = 1 (2) 
 i =1

 
  

where q is the number of components of a mixture  

Xi is the proportion of the ith component in the mixture. 
  

It is impossible to use the normal mix ratios such as 1:2:4 or 1:3:6 at a given water/cement ratio because of the 

requirement of the simplex that sum of the components must be one. Hence it is necessary to carry out a 

transformation from actual to pseudo components. The actual components represent the proportion of the 
ingredients while the pseudo components represent the proportion of the components of the ith component in the 

mixture i.e. X1, X2, X3, X4. Considering the four- component mixture tetrahedron simplex lattice, let the vertices 

of this tetrahedron (principal coordinates) be described by A1, A2, A3, A4. 

The arbitrary mix proportions prescribed for the vertices of the tetrahedron shown in (Figure 1), 
 

A1 (0.55: 1: 2: 4) 

A2 (0.50: 1: 2.5: 6) 
A3 (0.45: 1: 3: 5.5) 

A4 (0.6: 1: 1.5: 3.5) 

are based on past experiences and literature. 

 Let X represent pseudo components and Z, actual components. For component transformation we use the 

following equations: 

 X = BZ  (3) 

 Z = AX  (4) 
 

where A = matrix whose elements are from the arbitrary mix proportions chosen when ‘equation (4)’ is opened 

and solved mathematically. 
B = the inverse of matrix A. 

X = matrix of pseudo components. This is obtained from (Figure 2). 

Expanding and using ‘equations (3) and (4)’, the actual components Z were determined and presented in (Table 

1) [9]. 

 

3.2   Formulation of the optimisation model 

Osadebe’s regression model is used in the formulation of the mathematical model for the optimization 

of the modulus of rupture of concrete. Osadebe assumed that the response function, F(z) given by ‘equation (1)’ 

is continuous and differentiable with respect to its predictors, Zi [10] . 
      

F(z) = F(z(0)) + ∑[∂F(z(0)) /∂zi](zi –zi
(0)) + ½! ∑∑[∂2 F(z(0)) / ∂zi∂zj](zi- zi

(0)) 

 (zj –zj 
(0)) + ½! / ∑∑[∂2F(z(0)) / ∂zi

2](zi –zi
(0))2 + ……. (5) 

where 1≤i≤4, 1≤i≤4, 1≤j≤4,and 1≤i≤4 respectively. 
 

By making use of Taylor’s series, the response function could be expanded in the neighbourhood of a chosen 

point: 

 Z
(0)

 = Z1
(0)

, Z2
(0)

, Z3
(0)

, Z4
(0)

, Z5
(0) 

(6) 
 

Without loss of generality of the formulation, the point z(0) will be chosen as the origin for convenience sake. It 

is worthy of note here that the predictor, zi is not the actual portion of the mixture component rather it is the ratio 

of the actual portions to the quantity of concrete. For convenience sake, let zi be the fractional portion and si be 

the actual portions of the mixture components. 

If the total quantity of concrete is designated s, then  

 ∑si = s (7) 
 

For concrete of four components, 1≤i≤4 and so ‘equation (7)’ becomes: 

 s1 + s2 + s3 + s4 = s (8) 
 

If the total quantity of concrete required is a unit quantity, then ‘equation (8) should be divided throughout by s. 
Hence  

 s1/s + s2/s + s3/s + s4/s = s/s (9) 
 

But fractional portions, zi = si/s  (10) 

Substituting ‘equation (10)’ into ‘equation (9)’ gives ‘equation (11)’ 

 z1 + z2 + z3 + z4  = 1 (11) 

Experience has shown that the coefficients of regression obtained when ∑z =1 are mostly too large that the 

regression becomes too sensitive. As a result when the values of predictors outside the ones used in formulating 

the model are used to predict the response, the regression gives outrageous values. To correct this shortcoming, 

a system of z that will make ∑z = 100 will be adopted. Thus multiplying ‘equation (11)’ by 100 yields: 
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 100z1 + 100z2 + 100z3 + 100z4 = 100 (12) 

Let 100zi = Z  (13) 
 

Therefore, ‘equation (12)’ becomes: 

 Z1 + Z2 + Z3 + Z4 = 10 (14) 
 

In the formulation of the regression equation, the point, z(0) was chosen as the origin. 

This implies that z(0) = 0 and so  

z1
(0) = 0, z2

(0) = 0, z3
(0) = 0 and z4

(0) = 0 

Let  

 b0 = F(0) (15) 

 bi = ∂F(0) / ∂zi (16) 

 bij = ∂2F(0) /∂zi∂zj (17) 

 bii =∂2F(0) / ∂zi
2 (18) 

Substituting ‘equations (15) – (18)’ into ‘equation (5)’ gives: 

 F(z) =  b0 + ∑bizi + ∑∑bijzizj + ∑biizi
2 +  ….. (19) 

where 1≤i≤4 and 1≤j≤4 
Multiplying ‘equation (11)’ by b0 gives the expression for b0 i.e. ‘equation (20)’ 

 b0 = b0z1 + b0z2 + b0z3 + b0z4 (20) 

Multiplying ‘equation (11)’ by z1, z2, z3 and z4, and rearranging the products, gives ‘equation (21)-(24)’ 

 z1
2 = z1 – z1z2 – z1z3 – z1z4 (21) 

  z2
2 = z2 – z1z2 – z2z3 – z2z4 (22) 

  z3
2 = z3 – z1z3 – z2z3 – z3z4 (23) 

  z4
2 = z4 – z1z4 – z2z4 – z3z4 (24) 

Substituting ‘equations (20) – (24)’ into equation (19)’ and simplifying yields ‘equation (25)’ 

Y = α1z1 + α2z2 + α3z3 + α4z4 + α12 z1z2 + α13z1z3 

 + α14z1z4 + α23z2z3 + α24z2z4 + α34z3z4 (25) 

where  
  αi = b0 + bi + bii (26) 

and 

  αij = bij – bii – bjj (27) 
 

In general, ‘equation (25)’ is given as  

  Y = ∑αizi+∑αij zizj (28) 

where 1 ≤ i ≤ j ≤ 4  

 

‘Equations (25) and (28)’ are the optimization model equations when the system of Ʃz = 1 is used. But the 

system of ƩZ = 100 is adopted here and ‘equation (28)’ becomes: 

  Y = ∑αiZi +∑αijZiZj (29) 

where 1 ≤ i ≤ j ≤ 4  
 

Y is the response function at any point of observation, zi and Zi are the predictors and αi and αi are the 

coefficients of the optimization model equations when systems ∑zi = 1 and ∑Zi = 100 are used respectively. 

 

3.3 Determination of the coefficients of the optimization model equation 

Different points of observation will have different responses with different predictors at constant 

coefficients. At nth observation point, Y(n) will correspond with Zi
(n). That is, 

  Y(n)  = ∑αiZi
(n) + ∑αij Zi

(n) Zj
(n) (30) 

where 1 ≤ i ≤ j ≤ 4 and n = 1,2,3, …………. 10 

 

‘Equation (30)’ can be put in matrix from as  

[Y(n)] = [Z(n) ] {α}  (31) 
 

Rearranging ‘equation (31)’ gives: 

  {α} = [Z (n) ]-1 [Y (n)] (32) 
 

The actual mix proportions, si
(n) and the corresponding fractional portions, zi

(n) are presented in (Table 2). These 

values of the fractional portions Z(n) were used to develop Z(n) matrix and the inverse of Z(n) matrix presented in 

(Table 3). The values of Y(n) matrix are determined from laboratory tests and presented in (Table 4). With the 

values of the matrices Y(n) and Z(n) known, it is easy to determine the values of the constant coefficients of 

‘equation (31)’. 
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3.4 Experimental Method 

The actual components as transformed from ‘equation (4)’ and (Table 1) were used to measure out the 
quantities water (Z1), cement (Z2), sand (Z3), and coarse aggregates (Z4) in their respective ratios for the 

modulus of rupture of concrete test. For instance, the actual ratio for the test number 20 means that the concrete 

mix ratio is 1: 2.5: 5.3 at 0.5 free water/cement ratio. A total of 25 mix ratios were used to produce 50 prototype 

concrete beams measuring 150mm ˣ 150mm ˣ 600mm that were cured and  tested on the 28th day. Fifteen out of 

20 mix ratios were used as control mix ratios to produce 30 beams for the confirmation of the adequacy of the 

mixture design model given by ‘equation (25)’. The beams were then tested for flexural strength (i.e. modulus 

of rupture) using the hand operated flexural testing machine. The symmetrical two point loading system was 

used. The load under which the beam specimen failed was recorded and used to compute the modulus of rupture 

of the prototype beams [11]. 
 

IV. Results And Analysis 
The test result of the modulus of rupture of concrete (Yi) based on day 28-day strength, is presented as part of 

(Table 4). 

The flexural strength (modulus of rupture) was obtained from the following equation: 

 σ     =   WL/ bh
2  

(33) 

where σ is the modulus of rupture in Mega Pascals (MPa) or Newtons per millimeters squared (Nmm-2). 

W = maximum load in Newtons (N). 

L = the distance between supporting rollers in millimetres (mm). 

 b and h are the lateral dimensions of the specimen, in millimetres. 

The values of the mean of responses, Y and the variances of replicates Si
2 presented in columns 5 and 8 of 

(Table 4) are gotten from the following ‘equations (34) and (35)’: 

n 

 Y = ∑Yi/n (34) 
i=1 

 S2
i = [1/(n-1)]{∑Yi

2 – [1/n(∑Yi)
2]} (35) 

where 1≤i≤n and this equation is an expanded form of ‘equation(36)’  

n 

 S2
i = [1/(n-1)][∑ (Yi-Y)2] (36) 

i=1 

where Yi = responses 

Y = mean of the responses for each control point  

n = number of parallel observations at every point 

n−1 = degree of freedom 
S2

i = variance at each design point 

Considering all the design points, the number of degrees of freedom, Ve is given as 

 Ve = ∑N-1 (37) 

= 25 - 1 

= 24 

where N is the number of points 

                                                        N 

Replication variance, S2
y = (1/Ve) ∑Si

2  (38) 
                                                                                  i=1 

                                         =22.172/24 = 0.924 

where Si
2 is the variance at each point 

Using ‘equations (37) and (38)’, the replication error, Sy can be determined as follows: 

 Sy =√S2
y (39) 

= 0.961 

This replication error value was used below to determine the t-statistics values for Scheffe’s simplex model. 
 

4.1 Determination of the optimisation model based on Osadebe’s  theory 

Substituting the values of Y(n) from test results presented in (Table 4) into ‘equation (32)’ gives the 

following values of the coefficients of the model developed i.e. ‘equation (25)’. 

α1 = 448366.053  α2 = – 3.70408.3989 α3 = - 13065.39191  

α4 = 3.283969106  α5 = 796.3475619  α6 = -5211.73858 

α7 = 5857.977279  α8 = 5309.170464  α9 = 4734.703595 

α10 = - 6.916241183 
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Substituting the values of these coefficients into ‘equation (31)’ yields: 

Y = 448366.053Z1 – 370408.3989Z2 – 13065.39191Z3 + 3.283969106Z4 
 

+ 796.3475619Z1Z2 – 5211.73858Z1Z3 – 5857.977279Z1Z4 

   + 5309.170464Z2Z3 + 4734.703595Z2Z4 – 6.916241183Z3Z4 (40) 
 

‘Equation (40)’ is Osadebe’s mathematical model of modulus of rupture of concrete based on the 28-day 

strength. 

 

4.2 Test of the adequacy of the model 

Osadebe’s model equation was tested for adequacy against the controlled experimental results. It will 

be recalled that the hypothesis for this mathematical model are as follows: Null Hypothesis (Ho): There is no 

significant difference between the experimental and the theoretically expected results at an α- level of 0.05. 

Alternative Hypothesis (H1): There is a significant difference between the experimental and theoretically 

expected results at an α –level of 0.05. The student’s t-test and fisher test statistics were used for this test. The 

expected values (Y predicted) for the test control points were obtained by substituting the values of Zi from Zn 

matrix into the model equation i.e. ‘equation (40)’. These values were compared with the experimental result 
(Yobserved) from (Table 5). 

 

4.3 Student’s test  

For this test, the parameters ∆Y, є and t are evaluated using the following equations respectively 

 ∆Y = Y(observed) - Y(predicted)  (41) 

 ϵ = (∑аi
2 + ∑aij

2) (42) 

 t =  ∆y√n / (Sy√1+ ϵ) (43) 
 

where ϵ is the estimated standard deviation or error, 

t is the t-statistics, 

n is the number of parallel observations at every point 

Sy is the replication error 
ai and aij are coefficients while i and j are pure components 

ai = Xi(2Xi-1) 

aij = 4XiXj 

Yobs = Y(observed) = Experimental results 

Ypre = Y(predicted) = Predicted results 

At significant level, α = 0.05, tα/1(Ve) = t0.05/10 =  t0.005(14) = 2.977. The t-value is obtained from standard t-

statistics table.      

Since this is greater than any of the t- values calculated in (Table 5), we accept the Null hypothesis. Hence the 

model is adequate. 

 

4.4 Fisher Test 
For this test, the parameter y, is evaluated using the following equation: 

 y = ∑ Y/n (44) 

where Y is the response and n the number of responses. 

Using variance, S2 = [1/(n−1)][∑ (Y-y)2] and y = ∑ Y/n for 1≤i≤n     (45) 

Therefore from (Table 6),  

S2 
(obs) = 10.64933/14 = 0.761 and S2 

(pre) = 12.36237/14 = 0.883 

But the fisher test statistics is given by:  

 F = S2
1/ S

2
2 (46) 

 where S2
1 is the larger variance 

 Hence S2
1 = 0.833 and S2

2 = 0.761 

Therefore, F = 0.833/0.761 = 1.095 

From standard Fisher Table, F 0.95(14,14) = 2.41.Hence the regression equation is adequate. 
 

4.5 Comparison of results 

The results obtained from the model were compared with those obtained from the experiment, as 

presented in (Table 7) A comparison of the predicted results with the experimental results shows that the 

percentage difference ranges from a minimum of 2.95% to a maximum of 7.07%, which is insignificant. 

 

V. Conclusion 
1. Osadebe’s regression model using Taylor’s series has been applied and used successfully to develop 

mathematical models for optimization of modulus of rupture of concrete. 
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2. The modulus of rupture of concrete is a function of the proportions of the ingredients (cement, water, sand 

and coarse aggregate) of the concrete. 
 

3. The student’s t-test and the fisher test used in the statistical hypothesis showed that the model developed 

is adequate. 

4. Since the maximum percentage difference between the experimental result and the predicted result is 

insignificant (i.e.7.07%), the optimisation model will yield accurate values of modulus of rupture if given 

the mix proportions and vice versa. 

 

Vi   Nomenclature 
∑   summation 

≤     less or equal to 

– subtraction 

+    addition 

x     multiplication 

√     square root 

α    coefficient 

b     constant coefficient 

σ modulus of rupture of concrete 
mm    millimetres 

∆Y       change in Y 

[       bracket 

(       parenthesis 

Xi  proportion of the ith component in the mixture. 

q  number of components of a mixture 

A vertice of tetrahedron 

X pseudo components (variables) 

Z actual components (variables) 

B inverse of matrix A 

F(z) response function 
zi predictor(fractional portion) 

si actual portions 

αi coefficients of optimisation model equation 

Yi response(modulus of rupture of concrete) 

Y mean of responses 

n number of parallel observations at every point 

N number of points 
S2

1 variance at each design point 

      ϵ   estimated standard deviation or error 

      t   t-statistics 

     Sy  replication error 

     ai and aij  coefficients 

      i and j  pure components 

      Yobs = Y(observed) = Experimental results 

      Ypre = Y(predicted) = Predicted results 

      F  Fisher test statistics 
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Table 1. Actual Components Z (points 1 to 25) 

 

N X1 X2 X3 X4 Response Z1 Z2 Z3 Z4 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

1 

0 

0 

0 

0.5 

0.5 

0.5 

0 

0 
0 

0 

1 

0 

0 

0.5 

0 

0 

0.5 

0.5 
0 

0 

0 

1 

0 

0 

0.5 

0 

0.5 

0 
0.5 

0 

0 

0 

1 

0 

0 

0.5 

0 

0.5 
0.5 

Y1 

Y2 

Y3 

Y4 

Y12 

Y13 

Y14 

Y23 

Y24 
Y34 

0.55 

0.50 

0.45 

0.6 

0.525 

0.5 

0.575 

0.475 

0.55 
0.525 

1 

1 

1 

1 

1 

1 

1 

1 

1 
1 

2 

2.5 

3 

1.5 

2.25 

2.5 

1.75 

2.75 

2 
2.25 

4 

6 

5.5 

3.5 

5 

4.75 

3.75 

5.75 

4.75 
4.5 

 

Control points within the factor space 

11 

12 

13 

14 

15 
16 

17 

18 

19 

20 

0.5 

0.25 

0 

0 

0.75 
0 

0.25 

0.75 

0 

0 

0.25 

0.25 

0.25 

0.25 

0 
0.5 

0 

0.25 

0.75 

0.4 

0.25 

0.25 

0.25 

0 

0.25 
0.25 

0.5 

0 

0.25 

0.4 

0 

0.25 

0.5 

0.75 

0 
0.25 

0.25 

0 

0 

0.2 

C1 

C2 

C3 

C4 

C5 
C6 

C7 

C8 

C9 

C10 

0.5125 

0.525 

0.5375 

0.575 

0.525 
0.5125 

0.5125 

0.5375 

0.4875 

0.5 

1 

1 

1 

1 

1 
1 

1 

1 

1 

1 

2.375 

2.25 

2.125 

1.75 

2.25 
2.375 

2.375 

2.125 

2.625 

2.5 

4.875 

4.75 

4.625 

4.125 

4.375 
5.25 

4.625 

4.5 

5.875 

5.3 

 

Control points outside the factor space 

21 

22 

23 

24 

25 

0.5 

0.25 

0.5 

0.25 

0 

0.5 

0 

0 

0.25 

0.5 

0.5 

0.25 

0.5 

0.25 

0.5 

0.5 

0 

0.5 

0 

0.25 

C11 

C12 

C13 

C14 

C15 

1.05 

0.35 

0.8 

0.375 

0.625 

2 

0.5 

1.5 

0.75 

1.25 

4.5 

1.375 

3.25 

1.875 

3.125 

9.5 

2.875 

6.5 

3.875 

6.625 

 
 

Table 2. Values of actual mix proportions and the corresponding fractional portions 
 

N S1 S2 S3 S4 RESPONSE Z1 Z2 Z3 Z4 

1 0.55 1 2 4 Y1 7.285 13.245 26.490 52.980 

2 0.5 1 2.5 6 Y2 5.000 10.000 25.000 60.000 

3 0.45 1 3 5.5 Y3 4.523 10.050 30.151 55.276 

4 0.6 1 1.5 3.5 Y4 9.091 15.152 22.727 53.030 

5 0.525 1 2.25 5 Y12 5.983 11.396 25.641 56.980 

6 0.5 1 2.5 4.75 Y13 5.714 11.429 28.571 54.286 

7 0.575 1 1.75 3.75 Y14 8.127 14.134 24.735 53.004 

8 0.475 1 2.75 5.75 Y23 4.762 10.025 27.569 57.644 

9 0.55 1 2 4.75 Y24 6.627 12.048 24.096 57.229 

10 0.525 1 2.25 4.5 Y34 6.344 12.085 27.190 54.381 
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Table 3.  Z (n) matrix and inverse of Z(n) matrix 
Z(n) matrix 

 

 

Inverse of Z(n) matrix 

 
 

 

 

 

 

 

 
 

 

 

 

 

Z1 Z2 Z3 Z4 Z1Z2 Z1Z3 Z1Z4 Z2Z3 Z2Z4 Z3Z4 

7.2848 13.2450 26.4901 52.9801 96.4872 192.9751 385.9494 350.8614 701.7214 1403.44

80 

5.0000 10.0000 25.000 60.0000 50.0000 125.0000 300.0000 250.0000 600.0000 1500.00

00 

4.5226 10.0503 30.1508 55.2764 45.4535 136.3600 249.9930 303.0246 555.5444 1666.62

80 

9.0909 15.1515 22.7273 53.0303 137.7408 206.6116 482.0932 344.3527 803.4886 1205.23
60 

5.9829 11.3960 25.6410 56.9801 68.1811 153.4075 340.9062 292.2048 649.3452 1461.02

70 

5.7143 11.4286 28.5714 54.2857 65.3065 163.2656 310.2048 326.5311 620.4096 1551.01

80 

8.1272 14.1343 24.7350 53.0035 114.8723 201.0263 430.7700 349.6119 749.1674 1311.04

20 

4.7619 10.0251 27.5689 57.6441 47.7385 131.2803 274.4954 276.3810 577.8879 1589.18

40 

6.6265 12.0482 24.0964 57.2289 79.8374 159.6748 379.2273 290.3182 689.5052 1379.01

00 

6.3444 12.0846 27.1903 54.3807 76.6695 172.5061 345.0129 328.5839 657.1690 1478.62

80 
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Table 4. Test Results and Replication Variance 
 

EXP 
NO 

Replicates Response Yi 
(N/mm2) 

Response 
Symbol 

Y ∑Yi ∑Yi2 Si2 

1 1A 

IB 

5.96 

6.44 

Y1 6.2 12.40 77.00 0.120 

2 2B 
2B 

5.82 
5.86 

Y2 5.8 11.68 68.21 0.000 

3 3A 
3B 

4.84 
6.33 

Y3 5.6 11.17 63.49 1.105 

4 4A 

4B 

5.73 

6.04 

Y4 5.9 11.77 69.31 0.043 

5 5A 
5B 

4.58 
5.72 

Y12 5.2 10.30 53.69 0.645 

6 6A 
6B 

5..16 
3.70 

Y13 4.4 8.86 40.32 1.070 
 

7 7A 

7B 

6.32 

7.38 

Y14 6.9 13.70 94.41 0.565 

8 8A 
8B 

4.49 
4.46 

Y23 4.5 8.95 40.05 0.000 

9 9A 
9B 

5.16 
7.38 

Y24 6.3 12.54 81.09 2.464 

10 10A 
10B 

6.63 
5.11 

Y34 5.9 11.74 70.07 1.156 

11 11A 
11B 

4.58 
5.07 

C1 4.8 9.65 46.68 0.119 

12 12A 
12B 

4.09 
6.80 

C2 5.4 10.89 62.97 3.674 

13 13A 
13B 

5.87 
6.14 

C3 6.0 12.01 72.16 0.040 

14 14A 
14B 

6.54 
5.68 

C4 6.1 12.22 75.03 0.366 

15 15A 
15B 

4.72 
5.68 

C5 5.2 10.40 54.54 0.460 

16 16A 
16B 

4.80 
3.64 

C6 4.2 8.44 36.29 0.673 

17 17A 
17B 

3.96 
5.07 

C7 4.5 9.03 41.39 0.619 

18 18A 
18B 

5.29 
3.16 

C8 4.2 8.45 37.97 2.269 

19 19A 
19B 

4.49 
3.15 

C9 3.8 7.64 30.08 0.895 

20 20A 
20B 

5.13 
5.48 

C10 5.3 10.61 56.35 0.064 

Ʃ 16.347 

CONTROL OUTSIDE FACTOR SPACE  

21 21A 
21B 

4.09 
6.80 

C11 5.4 10.89 62.97 3.674 

22 22A 
22B 

5.24 
5.82 

C12 5.5 11.06 61.33 0.168 

23 23A 
23B 

5.51 
5.69 

C13 5.6 11.20 62.74 0.020 

24 24A 
24B 

3.02 
5.02 

C14 4.0 8.04 34.32 1.959 

25 25A 
25B 

3.20 
3.07 

C15 3.1 6.27 19.66 0.004 

 ƩƩ 22.172 
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Table 5. T –Statistics for test control points 
N CN i j ai aij a

2
i a

 2
ij  ϵ Yobs Ypre ∆Y t 

 

 

 

1 

 

 

 

C1 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

0 

0 

0 

-0.125 

-0.125 

-0.125 

0 

0.5 

0.5 

0 

0.25 

0 

0 

- 

0 

0 

0 

0.0156 

0.0156 

0.0156 

0 

0.25 

0.25 

0 

0.0625 

0 

0 

0 

 

 

 

 

 

 

 

0.6093 

 

 

 

4.8 

 

 

 

4.4 

 

 

 

0.4 

 

 

 

0.46 

     Ʃ 0.0468 0.5625 

 

 

 

2 

 

 

 

C2 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

-0.125 

-0.125 

-0.125 

-0.125 

-0.125 

-0.125 

-0.125 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

- 

0.0156 

0.0156 

0.0156 

0.0156 

0.0156 

0.0156 

0.0156 

0.0625 

0.0625 

0.0625 

0.0625 

0.0625 

0.0625 

- 

 

 

 

 

 

 

 

0.4842 

 

 

 

5.4 

 

 

 

5.02 

 

 

 

0.38 

 

 

 

 

0.46 

     Ʃ 0.1092 0.375 

 

 

 

3 

 

 

 

C3 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

0 

0 

0 

-0.125 

-0.125 

-0.125 

0 

0 

0 

0 

0.25 

0.5 

0.5 

- 

0 

0 

0 

0.0156 

0.0156 

0.0156 

0 

0 

0 

0 

0.0625 

0.25 

0.25 

- 

 

 

 

 

 

 

 

0.6093 

 

 

 

6.0 

 

 

 

5.22 

 

 

 

0.78 

 

 

 

0.90 

     Ʃ 0.0468 0.5625 

 

 

 

4 

 

 

 

C4 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

0 

0 

0 

-0.125 

-0.125 

0 

0.375 

0 

0 

0 

0 

0.75 

0 

- 

0 

0 

0 

0.0156 

0.0156 

0 

0.1406 

0 

0 

0 

0 

0.5625 

0 

- 

 

 

 

 

 

 

 

0.7343 

 

 

 

6.1 

 

 

 

6.28 

 

 

 

0.18 

 

 

 

 

0.20 

     Ʃ 0.1718 0.5625 

 

 

 

5 

 

 

 

C5 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

0.375 

0.375 

0.375 

0 

0 

-0.125 

0 

0 

0.75 

0 

0 

0 

0 

- 

0.1406 

0.1406 

0.1406 

0 

0 

0.0156 

0 

0 

0.5625 

0 

0 

0 

0 

- 

 

 

 

 

 

 

 

0.9999 

 

 

 

5.2 

 

 

 

5.57 

 

 

 

0.55 

 

 

 

1.36 

     Ʃ 0.4374 0.5625 

 

 

 

6 

 

 

 

C6 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

0 

0 

0 

0 

0 

-0.125 

-0.125 

0 

0 

0 

0 

0.5 

0.25 

- 

0 

0 

0 

0 

0 

0.0156 

0.0156 

0 

0 

0 

0.25 

0.25 

0.0625 

- 

 

 

 

 

 

 

 

0.5937 

 

 

 

4.2 

 

 

 

4.4 

 

 

 

-0.2 

 

 

 

0.23 

     Ʃ 0.0312 0.5625 

 

 

 

7 

 

 

 

C7 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

-0.125 

-0.125 

-0.125 

0 

0 

0 

-0.125 

0 

0.5 

0.25 

0 

0 

0.5 

- 

0.0156 

0.0156 

0.0156 

0 

0 

0 

0.0156 

0 

0.25 

0.0625 

0 

0 

0.25 

- 

 

 

 

 

 

 

 

0.6249 

 

 

 

4.5 

 

 

 

 

 

 

5.4 

 

 

 

0.19 

 

 

 

0.22 

     Ʃ 0.0624 0.5625 

 

 

 

8 

 

 

 

C8 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

0.375 

0.375 

0.375 

-0.125 

-0.125 

0 

0 

0.75 

0 

0 

0 

0 

0 

0 

0.1406 

0.1406 

0.1406 

0.0156 

0.0156 

0 

0 

0.5625 

0 

0 

0 

0 

0 

0 

 

 

 

 

 

 

 

1.0155 

 

 

 

4.2 

 

 

 

5.63 

 

 

 

1.43 

 

 

 

1.48 

     Ʃ 0.453 0.5625 

 

 

 

9 

 

 

 

C9 

 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

0 

0 

0 

0.375 

0.375 

-0.125 

0 

0 

0 

0 

0.75 

0 

0 

- 

0 

0 

0 

0.1406 

0.1406 

0.0156 

0 

0 

0 

0 

0.5625 

0 

0 

- 

 

 

 

 

 

 

 

 

 

 

3.8 

 

 

 

3.41 

 

 

 

0.39 

 

 

 

0.42 
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     Ʃ 0.2968 0.5625 0.8593 

 

 

 

10 

 

 

 

C10 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

 

0 

0 

0 

-0.08 

-0.08 

-0.08 

-0.12 

0 

0 

0 

0.64 

0.32 

0.32 

- 

0 

0 

0 

0.0064 

0.0064 

0.0064 

0.0144 

0 

0 

0 

0.4096 

0.1024 

0.1024 

- 

 

 

 

 

 

 

 

 

0.648 

 

 

 

5.3 

 

 

 

3.54 

 

 

 

1.76 

 

 

 

2.02 

     Ʃ 0.0336 0.6144 

 

 

 

11 

 

 

 

C11 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

- 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

 

 

 

 

 

 

 

 

7.0 

 

 

 

5.4 

 

 

 

5.02 

 

 

 

0.38 

 

 

 

0.20 

     Ʃ 0 7 

 

 

 

12 

 

 

 

C12 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

 

-0.125 

-0.125 

-0.125 

0 

0 

-0.125 

0 

0 

0.25 

0 

0 

0 

0 

- 

0.0156 

0.0156 

0.0156 

0 

0 

0.0156 

0 

0 

0.0625 

0 

0 

0 

0 

0 

 

 

 

 

 

 

 

 

0.1249 

 

 

 

 

5.5 

 

 

 

 

4.26 

 

 

 

 

1.24 

 

 

 

 

1.72 

     Ʃ 0.0624 0.0625 

 

 

 

13 

 

 

 

C13 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

- 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

- 

 

 

 

 

 

 

 

 

3 

 

 

 

5.6 

 

 

 

5.82 

 

 

 

0.22 

 

 

 

0.16 

     Ʃ 0 3 

 

 

 

14 

 

 

 

 

 

 

C14 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

 

-0.125 

-0.125 

-0.125 

-0.125 

-0.125 

-0.125 

0 

0.25 

0.25 

0 

0.25 

0 

0 

- 

0.0156 

0.0156 

0.0156 

0.0156 

0.0156 

0.0156 

0.0156 

0.0625 

0.0625 

0 

0.0625 

0 

0 

- 

 

 

 

 

 

 

 

 

0.2811 

 

 

 

4.0 

 

 

 

3.5 

 

 

 

0.5 

 

 

 

1.09 

     Ʃ 0.1875 0.1875 

 

 

 

15 

 

 

 

C15 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

 

0 

0 

0 

0 

0 

0 

-0.125 

0 

0 

0 

1 

0.5 

0.5 

- 

0 

0 

0 

0 

0 

0 

0.0156 

0 

0 

0 

1 

0.25 

0.25 

- 

 

 

 

 

 

 

 

 

1.5156 

 

 

 

3.1 

 

 

 

3.54 

 

 

 

0.44 

 

 

 

0.41 

     Ʃ 0.0156 1.5 
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Table 6:       F-Statistics for the controlled points 

Response 

Symbol 

Y(observed) Y(predicted) Y(obs)-y(obs) Y(pre)-y(pre) Y(obs)-y (obs)
2 (Y(pre)-y(pre))

2 

C1 4.80 4.40 -0.07333 -0.29867 0.005378 0.089202 

C2 5.40 5.02 0.526667 0.321333 0.277378 0.103255 

C3 6.00 5.22 1.126667 0.521333 1.269378 0.271788 

C4 6.10 6.28 1.226667 1.581333 1.504711 2.500615 

C5 5.20 5.75 0.326667 1.05133 0.106711 1.105302 

C6 4.20 4.40 -0.67333 0.29867 0.453378 0.089202 

C7 4.50 4.69 -0.37333 -0.00867 0.139378 7.51E-05 

C8 4.20 5.63 -0.67333 0.931333 0.453378 0.867382 

C9 3.80 3.41 -1.07333 -1.28867 0.152044 1.660662 

C10 5.30 3.54 0.426667 -1.15867 0.182044 1.342508 

C11 5.40 5.02 0.526667 0.321333 0.277378 0.103255 

C12 5.50 4.26 0.626667 -0.43867 0.392711 0.192428 

C13 5.60 5.82 0.726667 1.121333 0.528044 1.257388 

C14 4.00 3.50 -0.87333 -1.19867 0.762711 1.436802 

C15 3.10 3.54 -1.77333 -1.15867 3.144711 1.342508 

          Sum 73.10 70.48   10.64933 12.36237 

        Mean y(obs)=4.87 y(pre)=4.70     

 

Table 7:      Comparison of some Predicted Result with Experimental Results 
                                

S/N Experimental Result (N/mm2) Predicted Result (N/mm2) Percentage Difference 

1 4.50 4.69 4.22 

2 5.40 5.02 7.07 

3 5.60 5.82 3.93 

4 6.10 6.28 2.95 

5 4.50 4.69 4.22 

6 4.20 4.40 4.76 

 

 
 

 


