Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

${ }^{1,}$ Azhaar H. Sallo , ${ }^{2,}$ Afrah S. Hasan
${ }^{1,2,}$ Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan Region, Iraq.

Abstract

In this paper we discuss the existence of solutions defined in $C[0, T]$ for boundary value problems for a nonlinear fractional differential equation with a integral condition. The results are derived by using the Ascoli-Arzela theorem and Schauder-Tychonoff fixed point theorem.

Keywords: Riemann_Liouville fractional derivative and integral, boundary value problem, nonlinear fractional differential equation, integral condition, Ascoli-Arzela theorem and Schauder-Tychonoff fixed point theorem.

I. INTRODUCTION

Fractional boundary value problem occur in mechanics and many related fields of engineering and mathematical physics, see Ahmad and Ntouyas [2], Darwish and Ntouyas [4], Hamani, Benchohra and Graef [6], Kilbas, Srivastava and Trujillo [7] and references therein. Various problems has faced in different fields such as population dynamics, blood flow models, chemical engineering and cellular systems that can be modeled to a nonlinear fractional differential equation with integral boundary conditions. Recently, many authors focused on boundary value problems for fractional differential equations, see Ahmad and Nieto [1], Darwish and Ntouyas [4] and the references therein. Some works has been published by many authors on existence and uniqueness of solutions for nonlocal and integral boundary value problems such as Ahmad and Ntouyas [2] and Hamani, Benchohra and Graef [6].

In this paper we prove the existence of the solutions of a nonlinear fractional differential equation with an integral boundary condition at the right end point of $[0, T]$ in $C[0, T]$, where $C[0, T]$ is the space of all continuous functions over $[0, T]$,which results are based on Ascoli-Arzela theorem and SchauderTychonoff fixed point theorem.

II. PRELIMINARIES

In this section we introduce definitions, lemmas and theorems which are used throughout this paper. For references see Barrett [3], Kilbas, Srivastava and Trujillo [7] and references therein.
Definition 2.1. Let f be a function which is defined almost everywhere on $[a, b]$. For $\alpha>0$, we define:

$$
{ }_{a}^{b} D^{-\alpha} f=\frac{1}{\Gamma(\alpha)} \int_{a}^{b} f(t)(b-t)^{\alpha-1} d t
$$

provided that this integral exists in Lebesgue sense, where Γ is the gamma function.
Lemma 2.2. Assume that $f \in C(0,1) \cap L(0,1)$ with a fractional derivative of order $\alpha>0$ that belongs to $C(0,1) \cap L(0,1)$, then

$$
D_{0^{+}}^{-\alpha} D_{0^{+}}^{\alpha} f(t)=f(t)+C_{1} t^{\alpha-1}+C_{2} t^{\alpha-2}+\ldots+C_{n} t^{\alpha-n}
$$

for some $C_{i} \in R ; \mathrm{i}=1,2, \ldots, \mathrm{n}$, where n is the smallest integer greater than or equal to α.
Lemma 2.3. Let $\alpha, \beta \in R, \beta>-1$. If $x>a$, then

$$
{ }_{a}^{x} I^{\alpha} \frac{(x-a)^{\beta}}{\Gamma(\beta+1)}= \begin{cases}\frac{(x-a)^{\beta+\alpha}}{\Gamma(\alpha+\beta+1)} & ; \alpha+\beta \neq \text { negative integer } \\ 0 & ; \alpha+\beta=\text { negative integer }\end{cases}
$$

Lemma 2.4. The following relation ${ }_{a}^{x} D^{-\alpha x} D^{-\beta} f={ }_{a}^{x} D^{-(\alpha+\beta)} f$ holds if
a. $\alpha>0, \beta>0$ and the function $f(x) \in C$ on a closed interval $[a, b]$.
b. $\alpha \leq 0$ or $\alpha+n>0, \beta>0$ and the function $f(x) \in C^{(n)}$ on a closed interval $[a, b]$.

Lemma 2.5. If $\alpha>0$ and $f(x)$ is continuous on $[a, b]$, then ${ }_{a}^{x} D^{-\alpha} f(x)$ exists and it is continuous with respect to x on $[a, b]$.

Theorem 2.6. (The Arzela Ascoli Theorem)

Let F be an equicontinuous, uniformly bounded family of real valued functions f on an interval I (finite or infinite).Then F contains a uniformly convergent sequence of function f_{n}, converging to a function $f \in C(I)$ where $C(I)$ denotes the space of all continuous bounded functions on I. Thus any sequence in F contains a uniformly bounded convergent subsequence on I and consequently F has a compact closure in $C(I)$.

Theorem 2.7. (Shauder-Tychnoff Fixed Point Theorem)

Let B be a locally convex, topological vector space. Let Y be a compact, convex subset of B and T a continuous map of Y into itself. Then T has a fixed point $y \in Y$.

III. MAIN RESULT

The statements and proofs for the main results are carried out in this section.
Lemma 3.1. Let $f(t, x(t))$ and $h(t, x(t))$ belong to $C[0, T]$, and $1<\alpha \leq 2$, then the solution of

$$
\begin{align*}
& D^{\alpha} x(t)=f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right), \quad t \in(0, T) \tag{3.1}\\
& x^{(\alpha-2)}(0)=0 \tag{3.2}\\
& x^{(\alpha-1)}(T)=a \int_{0}^{\eta} x(\tau) d \tau \tag{3.3}
\end{align*}
$$

Where $\eta \in(0, T)$ and a is a constant, is given by

$$
\begin{gathered}
x(t)=\frac{t^{\alpha-1}}{\theta-\Gamma(\alpha)} \int_{0}^{T} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) d t-\frac{a t^{\alpha-1}}{\Gamma(\alpha+1)(\theta-\Gamma(\alpha))} \int_{0}^{\eta}(\eta-\tau)^{\alpha} f(\tau, x(\tau) \\
\left.\int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau
\end{gathered}
$$

Where $\theta=\frac{a}{\alpha} \eta^{\alpha}$ and $\theta \neq \Gamma(\alpha)$.
Proof. Operate both sides of equation (3.1) by the operator $D^{-\alpha}$, to obtain

$$
D^{-\alpha} D^{\alpha} x(t)=D^{-\alpha} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right)
$$

From Lemma (2.1), we get

$$
\begin{equation*}
x(t)=C_{1} t^{\alpha-1}+C_{2} t^{\alpha-2}+D^{-\alpha} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) \tag{3.4}
\end{equation*}
$$

Now, operate both sides of equation (3.4) by the operator $D^{\alpha-1}$, to have

$$
\begin{equation*}
D^{\alpha-1} x(t)=D^{\alpha-1} C_{1} t^{\alpha-1}+D^{\alpha-1} C_{2} t^{\alpha-2}+D^{\alpha-1} D^{-\alpha} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) \tag{3.5}
\end{equation*}
$$

From Lemma (2.2) and Lemma (2.3), $D^{\alpha-1} C_{1} t^{\alpha-1}=C_{1} \Gamma(\alpha), D^{\alpha-1} C_{2} t^{\alpha-2}=0$ and

$$
D^{\alpha-1} D^{-\alpha} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right)=D^{-1} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right)
$$

Therefore equation (3.5) can be written as

$$
\begin{equation*}
D^{\alpha-1} x(t)=C_{1} \Gamma(\alpha)+{ }_{0}^{t} D^{-1} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) \tag{3.6}
\end{equation*}
$$

Now, operating on both sides of equation (3.4) by the operator $D^{\alpha-2}$ and using again Lemma (2.2) and Lemma (2.3), equation (3.4) takes the form

$$
\begin{equation*}
D^{\alpha-2} x(t)=C_{1} \Gamma(\alpha) t+C_{2} \Gamma(\alpha-1)+{ }_{0}^{t} D^{-2} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) \tag{3.7}
\end{equation*}
$$

Now from the condition (3.2) and equation (3.7), it follows that $C_{2}=0$, and from the condition (3.3) and equation (3.6) we get

$$
\begin{gathered}
a \int_{0}^{\eta} x(\tau) d \tau=C_{1} \Gamma(\alpha)+\int_{0}^{T} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) d t \\
a C_{1} \int_{0}^{\eta} \tau^{\alpha-1} d \tau+\frac{a}{\Gamma(\alpha)} \int_{0}^{\eta} \int_{0}^{\tau}(\tau-s)^{\alpha-1} f\left(s, x(s), \int_{0}^{T} h(s, z, x(z)) d z\right) d s d \tau=C_{1} \Gamma(\alpha)+\int_{0}^{T} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) d t \\
C_{1}=\frac{1}{\theta-\Gamma(\alpha)}\left[\int_{0}^{T} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) d t-\frac{a}{\Gamma(\alpha+1)} \int_{0}^{\eta}(\eta-\tau)^{\alpha} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau\right]
\end{gathered}
$$

Where $\theta=\frac{a}{\alpha} \eta^{\alpha}$ and $\theta \neq \Gamma(\alpha)$, therefore the solution of the given boundary value problem takes the form

$$
\begin{aligned}
x(t)= & \frac{t^{\alpha-1}}{\theta-\Gamma(\alpha)} \int_{0}^{T} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) d t-\frac{a t^{\alpha-1}}{\Gamma(\alpha+1)(\theta-\Gamma(\alpha))} \int_{0}^{\eta}(\eta-\tau)^{\alpha} f(\tau, x(\tau), \\
& \left.\int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau .
\end{aligned}
$$

Theorem: Assume that $f(t, x(t))$ and $h(t, x(t))$ belong to $C[0, T]$, then the fractional boundary value problem (3.1-3) has a unique solution on $[0, T]$.
Proof: Let $X=\{x(t) ; x(t) \in C[0, T]\}$ and the mapping $T: C[0, T] \rightarrow C[0, T]$ defined by

$$
\begin{gather*}
T x(t)=\frac{t^{\alpha-1}}{\theta-\Gamma(\alpha)}\left[\int_{0}^{T} f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) d t-\frac{a}{\Gamma(\alpha+1)} \int_{0}^{\eta}(\eta-\tau)^{\alpha}\right. \\
\left.f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau\right]+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau \tag{3.8}
\end{gather*}
$$

in order to apply the Schauder-Tychonoff fixed point theorem, we should prove the following steps
Step1: T maps X into itself.
Let $x \in X$, since f is continuous on $[0, T]$, it guarantees that all the terms on (3.8) are continuous. Thus T maps Y into itself
Step2: T is a continuous mapping on X.
Let $\left\{x_{n}(t)\right\}_{n=1}^{\infty}$ be a sequence in X such that $\lim _{n \rightarrow \infty} x_{n}(t)=x(t)$ where $x(t) \in C[0, T]$, consider

$$
\begin{aligned}
& \left\|T x_{n}(t)-T x(t)\right\|= \\
& \| \frac{t^{\alpha-1}}{\theta-\Gamma(\alpha)}\left\{\int _ { 0 } ^ { T } \left(f \left(t, x_{n}(t), \int_{0}^{T} h\left(t, \tau, x_{n}(\tau)\right) d \tau-f\left(t, x(t), \int_{0}^{T} h(t, \tau, x(\tau)) d \tau\right) d t\right.\right.\right.
\end{aligned}
$$

$$
\begin{align*}
-\frac{a}{\Gamma(\alpha+1)} & \left.\int_{0}^{\eta}(\eta-\tau)^{\alpha}\left[f\left(\tau, x_{n}(\tau), \int_{0}^{T} h\left(\tau, s, x_{n}(s)\right) d s\right)-f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau\right]\right\} \\
+ & \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}\left[f\left(\tau, x_{n}(\tau), \int_{0}^{T} h\left(\tau, s, x_{n}(s)\right) d s\right)-f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right)\right] d \tau \| \tag{3.9}
\end{align*}
$$

the right hand side of the equation (3.9) tends to zero as n tends to infinity, since f is a continuous function and the sequence $\left\{x_{n}(t)\right\}_{n=1}^{\infty}$ converges to $x(t)$, that is

$$
x_{n}(t)-x(t) \mid \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Also since f is bounded hence by Lebesgue's dominated convergence theorem we have

$$
\left\|T x_{n}(t)-T x(t)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

therefore T is a continuous mapping on X.
Step3: The closure of $T X=\{T x(t) ; x(t) \in X\}$ is compact.
To prove step3 we will prove that the family $T X$ is uniformly bounded and equicontinuous. $T X$ is uniformly bounded as shown in step 1 , for proving the equicontinuity, let $t_{1}, t_{2} \in(0, T]$ such that $t_{1}<t_{2}$, then

$$
\begin{aligned}
\left|T x\left(t_{2}\right)-T x\left(t_{1}\right)\right| & =\left\lvert\, \frac{t_{2}^{\alpha-1}}{\theta-\Gamma(\alpha)} \int_{0}^{T} f\left(t_{2}, x\left(t_{2}\right), \int_{0}^{T} h\left(t_{2}, \tau, x(\tau)\right) d \tau\right) d t_{2}\right. \\
& -\frac{a t_{2}^{\alpha-1}}{\Gamma(\alpha+1)(\theta-\Gamma(\alpha))} \int_{0}^{\eta}(\eta-\tau){ }^{\alpha} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau \\
& +\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{2}}\left(t_{2}-\tau\right)^{\alpha-1} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau \\
& -\frac{t_{1}^{\alpha-1}}{\theta-\Gamma(\alpha)} \int_{0}^{T} f\left(t_{1}, x\left(t_{1}\right), \int_{0}^{T} h\left(t_{1}, \tau, x(\tau)\right) d \tau\right) d t_{1} \\
& +\frac{a t_{1}^{\alpha-1}}{\Gamma(\alpha+1)(\theta-\Gamma(\alpha))} \int_{0}^{\eta}(\eta-\tau)^{\alpha} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau \\
& -\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{2}}\left(t_{1}-\tau\right)^{\alpha-1} f\left(\tau, x(\tau), \int_{0}^{T} h(\tau, s, x(s)) d s\right) d \tau
\end{aligned}
$$

By continuity of f on $[0, T]$ there exists a positive constant M such that

$$
\begin{aligned}
&\left|T x\left(t_{2}\right)-T x\left(t_{1}\right)\right| \leq \left\lvert\, \frac{t_{2}^{\alpha-1}}{\theta-\Gamma(\alpha)} \int_{0}^{T} M d t_{2}-\frac{a t_{2}^{\alpha-1}}{\Gamma(\alpha+1)(\theta-\Gamma(\alpha))} \int_{0}^{\eta}(\eta-\tau)^{\alpha} M d \tau\right. \\
&+\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{2}}\left(t_{2}-\tau\right)^{\alpha-1} M d \tau-\frac{t_{1}^{\alpha-1}}{\theta-\Gamma(\alpha)} \int_{0}^{T} M d t_{1} \\
& \left.+\frac{a t_{1}^{\alpha-1}}{\Gamma(\alpha+1)(\theta-\Gamma(\alpha))} \int_{0}^{\eta}(\eta-\tau)^{\alpha} M d \tau-\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}}\left(t_{1}-\tau\right)^{\alpha-1} M d \tau \right\rvert\, \\
&=\mid \left\lvert\, \frac{M T}{\theta-\Gamma(\alpha)}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right)-\frac{a M}{\Gamma(\alpha+1)(\theta-\Gamma(\alpha))}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right) \int_{0}^{\eta}(\eta-\tau)^{\alpha} d \tau\right. \\
& \left.+\frac{M}{\Gamma(\alpha)}\left[\int_{0}^{t_{2}}\left(t_{2}-\tau\right)^{\alpha-1} d \tau-\int_{0}^{t_{1}}\left(t_{1}-\tau\right)^{\alpha-1} d \tau\right] \right\rvert\, \\
&=\left\lvert\, \frac{M T}{\theta-\Gamma(\alpha)}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right)-\frac{a M \eta^{\alpha+1}}{\Gamma(\alpha+2)(\theta-\Gamma(\alpha))}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.\quad+\frac{M}{\Gamma(\alpha)}\left[\int_{0}^{t}\left[\left(t_{2}-\tau\right)^{\alpha-1}-\left(t_{1}-\tau\right)^{\alpha-1}\right] d \tau+\int_{t_{1}}^{t_{2}}\left(t_{2}-\tau\right)^{\alpha-1} d \tau\right] \right\rvert\, \\
=\left\lvert\, \frac{M T}{\theta-\Gamma(\alpha)}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right)-\frac{a M \eta^{\alpha+1}}{\Gamma(\alpha+2)(\theta-\Gamma(\alpha))}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right)\right. \\
\left.\quad+\frac{M}{\Gamma(\alpha)}\left[\frac{t_{2}^{\alpha}}{\alpha}-\frac{\left(t_{2}-t_{1}\right)^{\alpha}}{\alpha}+\frac{\left(t_{2}-t_{1}\right)^{\alpha}}{\alpha}-\frac{t_{1}^{\alpha}}{\alpha}\right] \right\rvert\,
\end{gathered}
$$

$$
\left|T x\left(t_{2}\right)-T x\left(t_{1}\right)\right| \leq
$$

$$
\left|\frac{M T}{\theta-\Gamma(\alpha)}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right)-\frac{a M \eta^{\alpha+1}}{\Gamma(\alpha+2)(\theta-\Gamma(\alpha))}\left(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\right)+\frac{M}{\Gamma(\alpha+1)}\left(t_{2}^{\alpha}-t_{1}^{\alpha}\right)\right|
$$

when t_{1} tends to t_{2}, with $\left|t_{1}-t_{2}\right|<\delta$, we have $\left|T x\left(t_{2}\right)-T x\left(t_{1}\right)\right|<\varepsilon$, which proves that the family $T X$ is equicontinuous. Thus by Ascoli-Arzela theorem, $T X$ has a compact closure. In view of step1, step2 and step3, the Schauder-Tychonoff fixed point theorem guarantees that T has at least one fixed point $x \in X$, that is $T x(t)=x(t)$.

REFERENCES

[1] Ahmad B and Nieto J.J., Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Boundary Value Problems, 2011, 2011:36.
[2] Ahmad B. and Ntouyas S. K., Boundary Value Problems for Fractional Differential Inclusions with Four-Point Integral Boundary Conditions, Surveys in Mathematics and its Applications, 6 (2011), 175-193.
[3] Barrett, J.H., Differential equation of non-integer order, Canad. J. Math., 6 (4) (1954), 529-541.
[4] Darwish M.A. and Ntouyas S.K., On initial and boundary value problems for fractional order mixed type functional differential inclusions, Comput. Math. Appl. 59 (2010), 1253-1265.
[5] Goldberg, R.R., Methods of Real Analysis, John Wiley and Sons, Inc, USA (1976).
[6] Hamani S., Benchohra M. and Graef J.R., Existence results for boundary value problems with nonlinear fractional differential inclusions and integral conditions, Electron. J. Differential Equations 2010, No. 20, 16 pp.
[7] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., Theory and Applications of Fractional Differential Equations. Elsevier (NorthHolland), Math. Studies, 204, Amsterdam (2006).

