The Effect of Variable Designs of the Central Receiver to Improve the Solar Tower Efficiency

¹Miqdam Tariq Chaichan,², Khalil Ibrahim Abaas,³, Hussain A Kazem

¹(University of Technology, Baghdad, Iraq) ²(Sohar University, Sohar, Oman)

Abstract - Concentrated solar power (CSP) is a method of electric generation fueled by the heat of the sun, an endless source of clean, free energy. This study has focused on the feasibility of improving concentrating solar power (CSP) plant efficiency, by manufacturing a diminished prototype. Three states were studied, coloring the central target with a selective black color, fixing a reflector with arc form behind the target, and using these two changes together. The results showed an improvement in the thermal storage varied from month to month. The maximum stored energy was gained at August with increments about 56.1%, 58.63%, 62.23 and 64.69% for ordinary target, black painting, using reflector alone and black target with reflector together, respectively compared with stored energy for March.

Keywords - Concentrated solar power, target, reflectors, stored energy, glass transmissivity

I. Introduction

The most important objectives of mankind these days are calming climate change and achieving stabilization of greenhouse gas atmospheric concentrations. It will require large reductions in global emissions of energy-related carbon dioxide emissions. It will be needed to developing and spreading new low-carbon energy technologies [1]. Renewable energy sources offer a great potential for satisfying mankind's energy needs with negligible atmospheric CO_2 emissions. They are also contrary to fossil fuels inexhaustible, and more widely spread over the earth's surface [2]. A wide number of technologies and sources such as: biomass, hydraulics, ocean thermal energy, ocean tides and waves, solar heating and cooling, solar photovoltaic, solar thermal electricity and wind are encompassing as renewable. Sources of renewable energy, such as solar and wind power can generate more energy than the immediate demand. Large-scale production of solar electricity is still technically and economically challenging. For solar energy, concentrating solar power (CSP) plants offer ways to store this energy on a large scale, either thermally or as chemical fuels [3 & 4]. This abundance of solar energy makes concentrating solar power plants an attractive alternative to traditional power plants, which burn polluting fossil fuels, such as oil and coal. Fossil fuels also must be continually purchased and refined to use. Unlike traditional power plants, concentrating solar power systems provide an environmentally benign source of energy, produce virtually no emissions, and consume no fuel other than sunlight. The only impact concentrating solar power plants have on the environment is land use. Although the amount of land a concentrating solar power plant occupies is larger than that of a fossil fuel plant, both types use approximately the same amount of land, because fossil fuel plants use additional land for mining as well as road building to reach the mines [5 & 6].Concentrating solar power systems generate electricity with heat. Concentrating solar collectors use mirrors and lenses to concentrate and focus sunlight onto a thermal receiver, similar to a boiler tube. The receiver absorbs and converts sunlight into heat. The heat is then transported to a steam generator or engine where it is converted into electricity [7]. There are three main types of concentrating solar power systems: parabolic troughs, dish/engine systems, and central-receiver systems. These technologies can be used to generate electricity for a variety of applications, ranging from remote power systems as small as a few kilowatts (kW) up to grid-connected applications of 200-350 megawatts (MW) or more. A concentrating solar power system that produces 350 MW of electricity displaces the energy equivalent of 2.3 million barrels of oil [8, 9 & 10]Central receiver (solar tower) systems use a circular array of large individually-tracking mirrors (heliostats) to concentrate the sunlight on a central receiver mounted on top of a tower, with heat transferred for power generation through a choice of transfer media. After an intermediate scaling up to 30 MW capacity, solar tower developers now feel confident that grid-connected tower power plants can be built up to a capacity of 200 MW

solar-only units [11 & 12]. Use of thermal storages will increase their flexibility. Although central receiver plants are considered to be further from commercialization than parabolic trough systems, solar towers have good longer term prospects for high conversion efficiencies. Projects are in various stages of development (from assessment to implementation) in Spain, South Africa and United States. In the future, central receiver plant projects will benefit from similar cost reductions to those expected from parabolic trough plants. The anticipated evolution of total electricity costs is that they will drop to 5 cents/kWh in the mid to long term [13, 14 & 15].Iraq can be considered retarded in solar electric technology, because of the 100% dependence on fossil fuels to produce electricity. Iraq is distinguished as a rich country in solar energy. The solar radiation available for long times, in view of fact that Iraq has about 3600 sunny hours per year [15 & 16]. Many valuables Iraqi researches [17, 18, 19 & 20] clarified and confirmed the excellent activity of using sun in electrical power generation. Iraq posses about 3000 sunny hour per year, and the hourly solar intensity at (Baghdad city as an example) changes from 416 W/m² at Jan. to 833 W/m² at June [21 & 22]. The aim of this article is to study the effect of variable designs of the central receiver (target) to improve the solar tower efficiency in Iraqi weathers.

II. EXPERIMENTAL SETUP

The concentrated solar power plant is a solar optical concentration technology that uses a tower receivers and extremely closely spaced reflectors to allow a high delivered output from an area of roof or ground. It uses the annual solar beam radiation striking an area of ground or roof that can be captured and efficiently converted into useful electrical, thermal or cooling energy by using this technology.

A small prototype was manufactured with 4 rows of reflectors arranged in an arc form, the inner diameter was 0.25 m, and the outer diameter was 1 m. The rows were distributed as arcs with angle 150° at its centre facing south. The heliostats made up from 2.0×2.0 cm² mirrors. The first row heliostats were fixed 3 cm height from the ground. The second heliostats row was fixed 4 cm height from the ground and departed from first row 25 cm. The third heliostats row was fixed 6 cm height from the ground and departed from second row 25 cm. The forth heliostats row was fixed 8 cm height from the ground and departed from third row 25 cm. These arrangements were taken to enhance reflected radiation aiming to target by mirrors.

Fig. 1, Photographic picture for the prototype assembly

Fig. 2, Photographic picture for the prototype assembly with black target and reflector

The aiming strategy in which successive rows of rays reflected from the mirrors are directed to the receiver at different day time. Figs. 1 and 2 show the photographic pictures for the used assembly. The receiver was made of a cylindrical wrought iron rod with 6 cm dia meter, 10 cm height and 2.8 kg mass. Target specific heat is (Cp=0.46kJ/kg °C), and its thermal conductivity is (k=59 W/m °C) [24]. The target was put at a height of 30 cm above ground level. It was covered by a glass cover box (25 cm×25 cm×25cm) to preserve all the incident radiation, to prevent heat transfer by convection with ambient air, and to utilize the greenhouse effect. Three calibrated thermocouples were used to measure the receiver temperature at any time. One thermocouple was fixed at the top of the receiver, while the second one was fixed at its bottom, and the last one was fixed in the middle. Another target sample was prepared with the same specifications, except it was painted with a selective black color, to study the effect of this painting on collecting efficiency. Fig. 2 represents the prototype assembly. To collect the scattered radiations, an aluminum reflector was manufactured and prepared. It was fixed behind the target rod departed 17.67 cm from it. Ground coverage can be increased to high levels by using a reflector behind the receiver from the north side. This high ground coverage maximizes the collectable energy from a given available roof or ground space. This reflector was prepared by covering a piece of aluminum sheet

with aluminum reflecting paper, and it was shaped as an arc. This reflecting arc was put (12 cm far from the target assembly) facing the heliostats in such a manner that it reflected the incident rays coming from the holists directly to the receiver. Fig 3 depicts the prototype assembly in case of black target with reflector. A calibrated mercury thermometer was used to read the ambient air temperature every hour. It was fixed in shadow. The thermal efficiency of the system from incoming solar beam was calculated using the following equations:

The saved energy in target at each hour, Q_{act} , is

$$Q_{act} = m \times C_p \times \Delta T \text{ (kJ/hr)}$$
⁽¹⁾

While the theoretical energy supposed to reach the target every hour from sun rise until sunset, Q_{theo} , is calculated by the equation:

$$Q_{theo} = I_h \times \eta_r \times \varepsilon_g \times \eta_{ab} \times A_p \times N \tag{2}$$

The hourly efficiency η_h was calculated by the equation:

$$\eta_h = \frac{Q_{act}}{Q_{theo}} \tag{3}$$

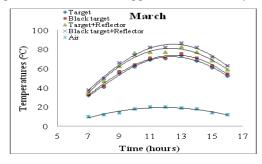
Tests Procedure

The field was divided into three groups of mirrors. The first group was aimed to the target every half an hour, starting from the first morning up to eleven (11:00) o'clock. The second group was aimed to target every half an hour starting from 11:00 o'clock until 14:00 o'clock. The last group (which is on the right hand side of the target) was aimed to the target every half an hour starting from 14:00 o'clock until sunset. This procedure was used to get rid of the critical angles of sun radiations.

The prototype was examined for four cases:

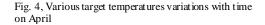
1. The sun rays were aimed to target.

2. The sun rays were aimed to black colored target.


3. The sun rays were aimed to target with aluminum reflector behind it.

4. The sun rays were aimed to black target with aluminum reflector behind it.

The tests were conducted in AL Al-Shaab city north of Baghdad, Iraq. These tests were conducted starting from March 2012 till end of August 2012. Every test was conducted in one shiny day starting from day break till sunset.


III. RESULTS AND DISCUSSIONS

Fig's (4, 5 & 6) reveal the measured temperature variation of the four cases compared to air temperature at Iraqi springtime (March, April and May). The air temperature rises during these months, the maximum temperature recorded for March was 20°C, for April was 27°C and for May was 33°C. The solar intensity increased in these days causing the target temperature to be higher with days advancing. These figures illustrate a fixed trend for measured temperatures variation. The lower measured temperature range was for the ordinary target. The maximum temperatures, but it delayed from the ordinary target with reflector. Black target temperatures exceeded the ordinary target temperatures, but it delayed from the ordinary target with reflector. These figures show that coloring the target with selective black color increased the collected energy due to black color absorption. Adding reflector to the assembly increased the collected energy. The reflector acted as a gathering element that collects the scattering radiation due to sun movement. Sometimes, the solar energy use causes instability in its readings due to the effect of clouds or dust. In April curves, it can be observed that black color temperatures reduced and approached to ordinary target temperatures.

◆Target ■Black † April 100 80 Temperatures (°C) 60 40 2.0 0 5 7 9 11 13 15 17 Time (hours)

Fig. 3, Various target temperatures variations with time on March

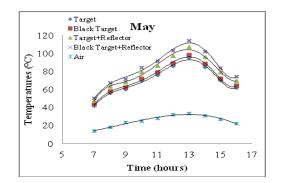


Fig. 5, Various target temperatures variations with time on May

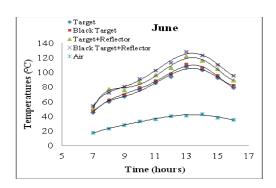
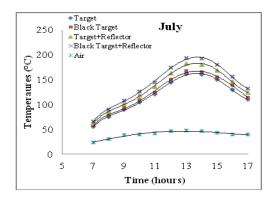



Fig. 6, Various target temperatures variations with time on June

The stored energy variation with day time for the four tested cases at Iraqi springtime (March, April & May, respectively) is demonstrated in Fig's (10, 11 & 12). These figures illustrate the sequence of stored energy increments started by ordinary target, black target, target with reflector and the maximu m values always for black target with reflector. This sequence is always correct, except for some variations. As an example in Fig. 10 at April tests, the black target curve comes near the target with reflector, also in May; the two curves approached each others before sunset.

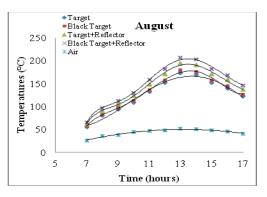


Fig. 7, Various target temperatures variations with time on July

Fig. 8, Various target temperatures variations with time on August

Fig's (13, 14 & 15) manifest the stored energy variations at day time at Iraqi summertime (June, July & August respectively). These curves clarify the former sequence without any approaches between the curves. Also, these figures indicate that when the atmosphere is clear, then the black target with reflector will collect and store the maximum energy. The stability of solar intensity in Iraqi summertime made the stored energy curves taking this order, while the instability of solar intensity in Iraqi springtime caused the black target curve approaching to target with reflector some times. The hourly incident radiation varies through daytime (where it increases starting from daybreak till it reaches its maximum value at noon, then it falls down after that). As a result, the stored energy in the target took the same trend.

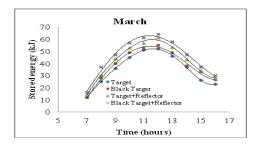


Fig. 9, Various targets stored energies variations with time on March

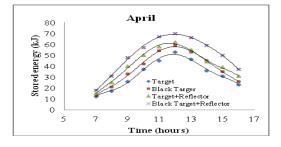


Fig. 10, Various targets stored energies variations with time on April

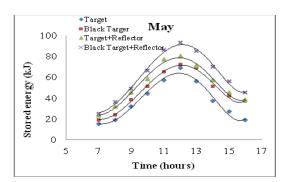


Fig. 11, Various targets stored energies variations with time on May

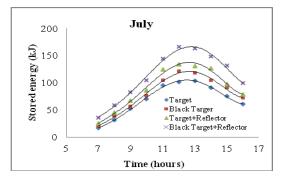


Fig. 13, Various targets stored energies variations with time on July

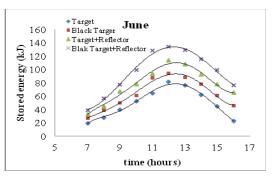


Fig. 12, Various targets stored energies variations with time on June

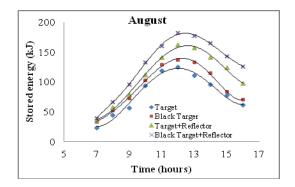


Fig. 14, Various targets stored energies variations with time on August

In view of the fact that the black target with reflector gains and stores the maximum energy compared to the other cases, the hourly efficiency for this case was studied, as illustrated in figures 16 & 17 for Iraqi spring and summertime. The hourly efficiency increased from month to month and approached its maximum values at August. These figures show that the maximum efficiencies will be reached at 12 AM and 1 PM, when the solar intensity reached its maximum values. These results clarify the possibility of improving the thermal storage of solar station by using any of the tested cases.

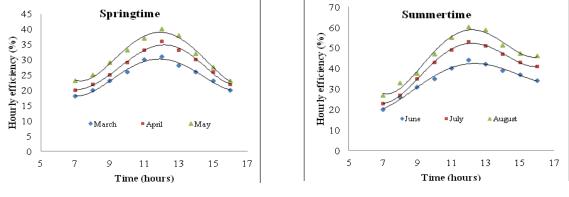


Fig. 15, Various targets hourly efficiency variations with time on spring ime

Fig. 16, Various targets hourly efficiency variations with time on summertime

IV. CONCLUSION

A prototype of concentrated solar energy station was designed and constructed. The variation of the target state was studied. Four cases were studied: using ordinary target, selective black colored target, ordinary target with reflector and black colored target with reflector. The tests were conducted at Iraqi weathers in springtime (March, April and May) and summertime (June, July and August) 2012. The results clarified the following conclusions:

- 1. The Iraqi weathers are suitable for this type of systems. It is possible to attain high target temperatures which can operate power station.
- 2. The maximum temperatures and stored energies reached were at July and August; this indicates the relationship between the solar intensity and resultant temperatures.
- 3. Coloring the target with a selective black color increased the target absorption which increases its temperatures and stored energy.
- 4. Using a reflector behind the target to collect the scattered rays and reaming it to the target increased the target temperature as well as it increased the stored energy.
- 5. The use of black colored target with reflector behind it gave the maximum temperatures and stored energy results, indicating its preference.

REFERENCES

- [1] Roeb M and Müller-Steinhagen H, Concentrating on Solar Electricity and Fuels, Science, 329 (13), 2010.
- [2] Kroposki B, Margolis R and Ton D, Harnessing the sun An Overview of Solar Technologies, may/June 2009
- [3] Braendle S, Benefits of metal reflective surfaces for concentrating solar applications, Power and Energy Magazine 2010, American Solar Energy Society, first published in the SOLAR 2010 Conference Proceedings.
- [4] DOE, Reducing water consumption of concentrating solar power electricity generation. U.S. Department of Energy. Report to Congress. 2010.
- [5] EIA, Monthly electric sales and revenue report with state distributions report. U.S. Energy Information Administration, form EIA-826, 2010
- [6] Johnson G, Plugging into the sun, National Geographic magazine, Sept. 2009.
- [7] Kearney AT, Solar thermal electricity 2025; (2010), available on: www.atkearney.com
- [8] Piemonte V, De Falco M, Tarquini P and Giaconia A, Life cycle assessment of a high temperature molten salt concentrated solar power plant. Presented at 20th European Symposium on Computer Aided Process Engineering, 2010.
- [9] Ummel K, Concentrating solar power in China and India: a spatial analysis of technical potential and the cost of deployment. Working Paper No. 219, Center for Global Development, Washington, D.C., USA, 2010.
- [10] Clifford K H and Kol G J, Incorporating uncertainty into probabilistic performance models of concentrating solar power planets, Proceedings of Energy Sustainability 2009, July 19-23, San Francisco, California, USA, 2009.
- [11] DESERTEC Foundation; Clean Power from Deserts, 2009. Available on: www.desertec.org
- [12] Zhang Y, Smith S J, Kyle G P & Stackhouse P W, Modeling the potential for thermal concentrating solar power technologies. Energy Policy, 38 (12), 2010, 7884-7897.
- [13] Popp D, Newell R G and Jafie A B, Energy, the environment, and technological change. In Hall, B. H. and Rosenberg, N., editors, Elsevier, Handbook of the economics of innovation, 1, 2010, 366-382.
- [14] Clifton J & Boruff B J, Assessing the potential for concentrated solar power development in rural Australia, Energy Policy, 38, 2010, 5272–5280.
- [15] Al-Rawi A M, An experimental and theoretical study to improve the performance of a solar water heater of pyramidical right triangular cross-sectional area, M Sc thesis, UOT, Baghdad, Iraq, 2007.
- [16] Hussein A Kazem and Miqdam T Chaichan, Status and Future Prospects of Renewable Energy in Iraq, Elsevier-Renewable and Sustainable Energy Review, USA, 16 (8), October 2012, 6007-6012.
- [17] Chaichan M T & Kazem H A, Thermal storage comparison for variable basement kinds of a solar chimney prototype in Baghdad -Iraq weathers, International Journal of Applied Sciences IJAS, 2 (2), 2011, 12-20.
- [18] Ahmed ST & Chaichan M T. A study of free convection in a solar chimney, Engineering and Technology Journal, vol. 28, No.21, 2011.
- [19] Mohamad-Rassol H F, Theoretical and experimental study of using solar energy to produce hydrogen gas", M.Sc. Thesis, University of Technology, 2008.
- [20] Al-Rawi A M, An experimental and theoretical study to improve the performance of a solar water heater of pyramidical right triangular cross-sectional area, M Sc thesis, UOT, Baghdad, Iraq, 2007.
- [21] Miqdam Tariq C., Khalil I. A, Hussein A Kazem, Feras Hasoon, Hakim S. Sultan Aljibori, Ali A K Alwaeli, Firas S Raheem4, and Ali H A Alwaeli, "Effect of Design Variation on Saved Energy of Concentrating Solar Power Prototype", International Multi-Conference of Engineers and Computer Scientists (IMECS), London-UK, 4-6 July 2012, 1989-1993.
- [22] Sintone CW, Glass and Energy, Chapter in Encyclopedia of Energy, vol. 3, Published by Elsevier Inc., 2004.

т	(target mass) = 2.8 kg
Ср	(target specific heat (Cp) = 0.46 kJ/kg °C
ΔT	(temperature differences between every two hours from sun rise until sunset) = °C/hr
I_h	solar intensity for every hour of the day, these data were taken from the Iraqi Metallurgy
	Organization.
A_p	single mirror area (m ²)
Ν	Mirrors numbers
\mathcal{E}_{g}	The of transmissivity the glass surrounding the target $=(90\%)$
η_r	Mirrors reflection efficiency = (75%) [21]
$\eta_{_{ab}}$	Target absorptive = (0.8) [22]
$\eta_{\scriptscriptstyle h}$	The hourly efficiency

NOMENCLATURE