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Abstract: An analysis has been performed to study the natural convection of a non-Newtonian fluid between 

two infinite parallel vertical flat plates and the effects of the non-Newtonian nature of fluid on the heat transfer 

are studied. The governing boundary layer and temperature equations for this problem are reduced to an 

ordinary form and are solved by Homotopy perturbation method (HPM) and numerical method. Velocity and 

temperature profiles are shown graphically. The obtained results are valid for the whole solution domain with 

high accuracy. These methods can be easily extended to other linear and non-linear equations and so can be 
found widely applicable in engineering and science. 
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1. Introduction 
Heat transfer by natural convection frequently occurs in many physical problems and engineering 

applications such as geothermal systems, heat exchangers, chemical catalytic reactors, fiber and granular 

insulation, packed beds, petroleum reservoirs, and nuclear waste repositories. In review of its importance, the 

flow of Newtonian and non-Newtonian fluids through two infinite parallel vertical plates has been investigated 

by numerous authors. 

A non-Newtonian fluid is a fluid whose flow properties are not described by a single constant value of 

viscosity. Many polymer solutions and molten polymers are non-Newtonian fluids, as are many commonly 
found substances such as ketchup, starch suspensions, paint, blood, and shampoo. In a Newtonian fluid, the 

relation between the shear stress and the strain rate is linear (and if one were to plot this relationship, it would 

pass through the origin), the constant of proportionality being the coefficient of viscosity. In a non-Newtonian 

fluid, the relation between the shear stress and the strain rate is nonlinear, and can even be time dependent. 

Therefore, a constant coefficient of viscosity cannot be defined. A ratio between shear stress and the rate of 

strain (or shear-dependent viscosity) can be defined, this concept being more useful for fluids without time-

dependent behavior. Although the concept of viscosity is commonly used to characterize a material, it can be 

inadequate to describe the mechanical behavior of a substance, particularly non-Newtonian fluids. They are best 

studied through several other rheological properties which relate the relations between the stress and strain rate 

tensors under many different flow conditions, such as oscillatory shear, or extensional flow which are measured 

using different devices or rheometers. The properties are better studied using tensor-valued constitutive 

equations, which are common in the field of continuum mechanics. 
The natural convection problem between vertical flat plates for a certain class of non-Newtonian fluids 

has been carried out by Bruce and Na [1]. Other laminar natural convection problems involving heat transfer 

have also been studied [2]. However, Rajagopal [3] presented a complete thermodynamic analysis of the 

constitutive functions. These scientific problems and phenomena are modeled by ordinary or partial differential 

equations. In most cases, analytical solutions cannot be applied to these problems, so these equations should be 

solved using special techniques. 

In recent years, much attention has been devoted to the newly developed methods to construct an 

analytic solution of equation; such as the method including the Perturbation techniques. Perturbation techniques 

are too strongly dependent upon the so-called “small parameters” [4]. Many other different methods have been  
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Introduced to solve nonlinear equations such as Adomian decomposition method (ADM) [5–8], Hamiltonian 

Approach [9-11] and Exp-Function method [12, 13].  

Homotopy perturbation method is one of the well-known methods to solve non-linear equations that does not 

need to any small parameter. This method has been introduced by Prof. J. H. He in 1998 [14].  

The method has been used by many authors [15–19] in a wide variety of scientific and engineering applications 

to solve different types of governing differential equations: linear and non-linear, homogeneous and non-

homogeneous, and coupled and decoupled as well. This method offers highly accurate successive 

approximations of the solution. Therefore in the present work we re-examine the natural convection of a non-

Newtonian fluid, namely the Rivlin–Ericksen fluid of grade three, between two infinite parallel vertical flat 
plates, and attempt to obtain its solution using the HPM. 

2. Fundamentals of the Homotopy Perturbation Method 
To illustrate the basic ideas of this method, we consider the following equation [17-19]: 

( ) ( ) 0A u f r 
 r  (1) 

With the boundary condition of:   

( , ) 0       
u

B u r
n


 

  

 (2) 

Where A is a general differential operator, B a boundary operator, ( )f r a known analytical function and   is 

the boundary of the domain . 

A  can be divided into two parts which are L  and N , where L  is linear and N  is nonlinear. Eq. (1) can 

therefore be rewritten as follows: 

( ) ( ) ( ) 0L u N u f r  
 

r  (3) 

Homotopy perturbation structure is shown as follows: 

       0( , ) (1 ) [ ] [ ] 0H p p L L u p A f r       
 

(4) 

Where: 

 ( , ) : 0,1r p R    (5) 

In Eq. (4), [0,1]p is an embedding parameter and 0u  is the first approximation that satisfies the boundary 

condition. We can assume that the solution of Eq. (4) can be written as a power series in p , as following:  

2 3

0 1 2 3 ...v pv p v p v       (6) 

And the best approximation for solution is:      
2 3

0 1 2 3
1

lim( ...)
p

u v pv p v p v


      (7) 

3. Description of the Problem 
A schematic of the problem under study is shown in Fig. 1. It consists of two flat plates that can be 

positioned vertically. A non-Newtonian fluid is in two flat plates a distance 2b  apart. The walls at x b   and 

x b  are held at constant temperatures 2  and 1 , respectively, where 1 2  .  

This difference in temperature causes the fluid near the wall at x b  to rise and the fluid near the wall at 

x b  to fall. 

 
Fig. 1. Schematic diagram of the problem under consideration 
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The equation of motion is [3]: 

22 2
3

02 2
6 ( ) 0m

d V dV d V
g

dx dx dx
   

 
    

 
 (8) 

And the energy equation as follows: 

2 4 2
3

2
2 0

dV dV d
k

dx dx dx
 

   
     

   
 (9) 

Rajagopal [3] has demonstrated that by using the similarity variables: 

0 1 2

,  = ,  = mV x
v

V b
 




   (10) 

The Navier–Stokes and Energy equations can be reduced to the following pair of ordinary differential equations 

[3]: 

22 2

2 2
6 0

d v dv d v

d d d
 

  

 
   

 
 (11) 

And 

2 42

2
.Pr 2 .Pr 0

d dv dv
E E

d d d




  

   
     

   
 (12) 

Where: 

 

2

0

1 2

V
E

c


 
 (13) 

And: 

Pr
c

k


  (14) 

And: 

3 2

0

2

6 V

b





  (15) 

Where c  is the specific heat of the fluid. The appropriate boundary conditions are: 

1
0,  = +   at  = -1

2
v    (16) 

1
0,  = -   at  = +1

2
v    (17) 

In the next sections, we shall solve the system of Eqs. (11) and (12) by using the HPM. The equations are 

coupled and highly nonlinear. 

4. Applacation  

According to the HPM, we can construct a homotopy of Eq (11) and Eq (12) as follows: 

 
22 2 2

1 2 2 2
( , ) 1 6

d v d v dv d v
H p p p

d d d d
   

   

    
               

 (18) 

And: 
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 (19) 
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We can assume that the solution of Eq. (11) and Eq. (12) can be written as a power series in p , as following:  

2 3

0 1 2 3( ) ( ) ( ) ( ) ( ) ...v pv p v p v           (20) 

And: 
2 3

0 1 2 3( ) ( ) ( ) ( ) ( ) ...p p p               (21) 

Substituting Eqs. (20) and (21) into Eq. (11) and (12) and arranging the coefficients of ‘‘ p ’’ powers, we have: 

2
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22 2
1

1 1 0 02 2

22 2 2
2

0 1 0 2 0 1 22 2 2
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(23) 

To determine 0 ( ),   the coefficient of 
0p  in Eq. (23) must be zero: 

2
0

02
 : ( ) 0

d
p

d
 



 
 

 
 

(24) 

With the boundary condition of: 

0

0

1
= -   at  = +1

2

1
= +   at  = -1

2

 

 

 

(25) 

Busing the boundary condition we have: 

0

1
( )

2
     

(26) 

To determine 0 ( ),v   the coefficient of 
0p  in Eq. (22) must be zero: 

2
0

0 02
 : ( ) ( ) 0

d
p v

d
  



 
  

 
 

(27) 

With the boundary condition of: 

0

0

= 0  at  = +1

= 0  at  = -1

v

v




 

(28) 

Using the boundary condition we have: 

3

0

1 1
( )

12 12
v      

(29) 

Now using the coefficient of 
1p  in Eq. (23), 0 ( )v  and 0 ( )  , 1( )  can be obtained. Also the boundary 

condition is: 
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1

1

= 0  at  = +1

= 0  at  = -1

 

 
 

 

((30) 

   10 8 6 4 2 2

1
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( ) .Pr 54 648 12 432 36
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(31) 

And using the coefficient of 
1p  in Eq. (22),

0 ( )v  , 
0 ( )  and 

1( )  , 
1( )v  can be obtained. Also the 

boundary condition is: 

1

1

= 0  at  = +1

= 0  at  = -1

v

v




 

(32) 
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(33) 

Similary, using the coefficient of 
2p  in Eq. (23), 2 ( )   and the coefficient of 

2p  in Eq. (22), 2 ( )v   can be 

obtained. The solutions 2 ( )v  and 2 ( )  were too long to be mentioned here, therefore, they are shown 

graphically also the results are tabulated in Table 1. If we add one more term to the power series in p  (Eq. (6)) 

we can easily obtain the fourth -order approximation. Upon, solving the problem, discussed above, we obtain an 

astonishingly accurate solution for the third-order approximations. The third-order solution of the problem when 

1p  will be as follows: 

2

0 1 2( ) ( ) ( ) ( )v pv p v        (34) 

2

0 1 2( ) ( ) ( ) ( )p p           (35) 

 
Fig. 2. Results of ( )   for various Pr when 1,  E=1.   
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Fig. 3. Results of ( )   for various Pr when 1,  E=1.   

 
 Fig. 4. Results of ( )v   for various E when 1,  Pr=1.   

Table 1. The results of HPM and NM methods for ( )v  and ( )  when 0.5,  Pr=1, E=1.   

 ( )v   ( )   

  HPM Numerical Error (%) HPM Numerical Error (%) 

-1.0 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 

-0.8 0.0239 0.0231 3.4632  0.4007 0.4007 0.0000 

-0.6 0.0322 0.0314 2.5478 0.3012 0.3011 0.0332 

-0.4 0.0284 0.0277 2.5271 0.2016 0.2015 0.0496 

-0.2 0.0166 0.0167 0.5988 0.1019 0.1018 0.0982 

0 0.00080 0.00075 6.6667 0.0021 0.00200 5.0000 

0.2 -0.0151 -0.0147 2.7211 -0.0981 -0.0981 0.0000 

0.4 -0.0271 -0.0265 2.2642 -0.1984 -0.1984 0.0000 

0.6 -0.0312 -0.0305 2.2436 -0.2988 -0.2989 0.0335 

0.8 -0.0234 -0.0226 3.5398 -0.3993 -0.3993 0.0000 

1.0 0.0000 0.0000 0.0000 -0.5000 -0.5000 0.0000 

 

The results of different methods of HPM, and Numerical are compared in Table 1. Fig. 2 shows the result 

of ( )v  , for various Prandtl number Pr when 1,  E=1  , Fig. 3 shows the result of ( )  , for various Prandtl 

number Pr when 1,  E=1  and Fig. 4 shows the results of ( )v   for various E when 1,  Pr=1.   
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5. Conclusion 
In the present work, we have applied the HPM to compute the natural convection of an incompressible 

fluid of grade three between two infinite parallel vertical plates. The figures and tables clearly show that the 

results by HPM are in excellent agreement with the results of Numerical solution. According to Figs. 2 and 3, 

by increasing Pr the nondimensional velocity ( )v  and temperature ( )  are increased respectively. By 

increasing E in Fig. 4, the non dimensional velocity ( )v  is increased. According to the Table 1 this 

approximate analytical solution is in excellent agreement with the corresponding numerical solutions. 

HPM provides highly accurate numerical solutions in comparison with other methods. The HPM does not need 

a small parameter. Finally, it has been attempted to show the capabilities and the wide-range applications of the 

Homotopy perturbation method in comparison with the numerical solution of natural convection flow of a non-

Newtonian fluid between two vertical flat plat problems. 

The solutions are quite elegant and fully acceptable in accuracy. Governing equations are easily solved by the 

analytical method. Consequently, these equations are solved by the numerical method using MAPLE 10, 
mathematical software, whose results are given in following figures and table. 
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